다음을 통해 공유


sinh

복잡 한 숫자의 하이퍼볼릭 사인 값을 반환합니다.

template<class Type>
   complex<Type> sinh(
      const complex<Type>& _ComplexNum
   );

매개 변수

  • _ComplexNum
    복잡 한 숫자의 하이퍼볼릭 사인 값을 결정.

반환 값

입력된 하는 복잡 한 숫자의 하이퍼볼릭 사인입니다 복잡 한 수 있습니다.

설명

Id가 복잡 한 하이퍼볼릭 월급을 정의 합니다.

sinh (z) = (1/2)*( exp (z) – exp (-z) )

sinh (z) = sinh (a + bi) = sinh (a) cos (b) + icosh (a) sin (b)

예제

// complex_sinh.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>

int main( )
{
   using namespace std;
   double pi = 3.14159265359;
   complex <double> c1 ( 3.0 , 4.0 );
   cout << "Complex number c1 = " << c1 << endl;

   // Values of sine of a complex number c1
   complex <double> c2 = sinh ( c1 );
   cout << "Complex number c2 = sinh ( c1 ) = " << c2 << endl;
   double absc2 = abs ( c2 );
   double argc2 = arg ( c2 );
   cout << "The modulus of c2 is: " << absc2 << endl;
   cout << "The argument of c2 is: "<< argc2 << " radians, which is " 
        << argc2 * 180 / pi << " degrees." << endl << endl; 

   // Hyperbolic sines of the standard angles in 
   // the first two quadrants of the complex plane
   vector <complex <double> > v1;
   vector <complex <double> >::iterator Iter1;
   complex <double> vc1  ( polar ( 1.0, pi / 6 ) );
   v1.push_back( sinh ( vc1 ) );
   complex <double> vc2  ( polar ( 1.0, pi / 3 ) );
   v1.push_back( sinh ( vc2 ) );
   complex <double> vc3  ( polar ( 1.0, pi / 2 ) );
   v1.push_back( sinh ( vc3) );
   complex <double> vc4  ( polar ( 1.0, 2 * pi / 3 ) );
   v1.push_back( sinh ( vc4 ) );
   complex <double> vc5  ( polar ( 1.0, 5 * pi / 6 ) );
   v1.push_back( sinh ( vc5 ) );
   complex <double> vc6  ( polar ( 1.0, pi ) );
   v1.push_back( sinh ( vc6 ) );

   cout << "The complex components sinh (vci), where abs (vci) = 1"
        << "\n& arg (vci) = i * pi / 6 of the vector v1 are:\n" ;
   for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )
      cout << *Iter1 << endl;
}
  
  

요구 사항

헤더: <complex>

네임 스페이스: std