dsl Package
Functions
pipeline
Build a pipeline which contains all component nodes defined in this function.
pipeline(func: Callable[[P], T] | None = None, *, name: str | None = None, version: str | None = None, display_name: str | None = None, description: str | None = None, experiment_name: str | None = None, tags: Dict[str, str] | str | None = None, **kwargs: Any) -> Callable[[Callable[[P], T]], Callable[[P], PipelineJob]] | Callable[[P], PipelineJob]
Parameters
Name | Description |
---|---|
func
|
The user pipeline function to be decorated. Default value: None
|
Keyword-Only Parameters
Name | Description |
---|---|
name
|
The name of pipeline component, defaults to function name. |
version
|
The version of pipeline component, defaults to "1". |
display_name
|
The display name of pipeline component, defaults to function name. |
description
|
The description of the built pipeline. |
experiment_name
|
Name of the experiment the job will be created under, if None is provided, experiment will be set to current directory. |
tags
|
The tags of pipeline component. |
Returns
Type | Description |
---|---|
Either
|
Examples
Shows how to create a pipeline using this decorator.
from azure.ai.ml import load_component
from azure.ai.ml.dsl import pipeline
component_func = load_component(
source="./sdk/ml/azure-ai-ml/tests/test_configs/components/helloworld_component.yml"
)
# Define a pipeline with decorator
@pipeline(name="sample_pipeline", description="pipeline description")
def sample_pipeline_func(pipeline_input1, pipeline_input2):
# component1 and component2 will be added into the current pipeline
component1 = component_func(component_in_number=pipeline_input1, component_in_path=uri_file_input)
component2 = component_func(component_in_number=pipeline_input2, component_in_path=uri_file_input)
# A decorated pipeline function needs to return outputs.
# In this case, the pipeline has two outputs: component1's output1 and component2's output1,
# and let's rename them to 'pipeline_output1' and 'pipeline_output2'
return {
"pipeline_output1": component1.outputs.component_out_path,
"pipeline_output2": component2.outputs.component_out_path,
}
# E.g.: This call returns a pipeline job with nodes=[component1, component2],
pipeline_job = sample_pipeline_func(
pipeline_input1=1.0,
pipeline_input2=2.0,
)
ml_client.jobs.create_or_update(pipeline_job, experiment_name="pipeline_samples", compute="cpu-cluster")
GitHub에서 Microsoft와 공동 작업
이 콘텐츠의 원본은 GitHub에서 찾을 수 있으며, 여기서 문제와 끌어오기 요청을 만들고 검토할 수도 있습니다. 자세한 내용은 참여자 가이드를 참조하세요.
Azure SDK for Python