MonitorDefinition Class
Monitor definition
- Inheritance
-
azure.ai.ml.entities._mixins.RestTranslatableMixinMonitorDefinition
Constructor
MonitorDefinition(*, compute: ServerlessSparkCompute, monitoring_target: MonitoringTarget | None = None, monitoring_signals: Dict[str, DataDriftSignal | DataQualitySignal | PredictionDriftSignal | FeatureAttributionDriftSignal | CustomMonitoringSignal | GenerationSafetyQualitySignal | GenerationTokenStatisticsSignal] = None, alert_notification: Literal['azmonitoring'] | AlertNotification | None = None)
Keyword-Only Parameters
Name | Description |
---|---|
compute
|
The Spark resource configuration to be associated with the monitor |
monitoring_target
|
The ARM ID object associated with the model or deployment that is being monitored. |
monitoring_signals
|
Optional[Dict[str, Union[DataDriftSignal , DataQualitySignal, PredictionDriftSignal , FeatureAttributionDriftSignal , CustomMonitoringSignal , GenerationSafetyQualitySignal , GenerationTokenStatisticsSignal , ModelPerformanceSignal]]]
The dictionary of signals to monitor. The key is the name of the signal and the value is the DataSignal object. Accepted values for the DataSignal objects are DataDriftSignal, DataQualitySignal, PredictionDriftSignal, FeatureAttributionDriftSignal, and CustomMonitoringSignal. |
alert_notification
|
The alert configuration for the monitor. |
Examples
Creating Monitor definition.
from azure.ai.ml.entities import (
AlertNotification,
MonitorDefinition,
MonitoringTarget,
SparkResourceConfiguration,
)
monitor_definition = MonitorDefinition(
compute=SparkResourceConfiguration(instance_type="standard_e4s_v3", runtime_version="3.3"),
monitoring_target=MonitoringTarget(
ml_task="Classification",
endpoint_deployment_id="azureml:fraud_detection_endpoint:fraud_detection_deployment",
),
alert_notification=AlertNotification(emails=["abc@example.com", "def@example.com"]),
)
GitHub에서 Microsoft와 공동 작업
이 콘텐츠의 원본은 GitHub에서 찾을 수 있으며, 여기서 문제와 끌어오기 요청을 만들고 검토할 수도 있습니다. 자세한 내용은 참여자 가이드를 참조하세요.
Azure SDK for Python