Del via


Optimalisere utløseruttrykk og forståelse av naturlig språk

Hva er utløseruttrykk i Copilot Studio

  • Utløseruttrykk trener agentens modell for naturlige språkforståelse.

  • Utløseruttrykk konfigureres på emnenivå og angir for agenten hvilke typiske brukeruttrykk et bestemt emne skal utløses for.

  • Utløseruttrykk fanger vanligvis opp måten en bruker spør om et problem på. Eksempel: "problem med ugress i plen"

Tips

  • Når et nytt emne utløses, trenger en oppretter bare å gi noen få eksempeluttrykk (ideelt mellom fem og ti). Når agent brukes, analyserer AI-en hva brukeren sier og utløser emnet nærmest i betydningen til brukerens ytring.
  • Hvis du vil ha mer informasjon om effektive utløseruttrykk, kan du se Velge effektive utløseruttrykk.

Viktigheten av utløserkonteksten

Copilot Studio NLU fungerer på forskjellig måte basert på samtaletilstanden, noe som noen ganger kan føre til ulik virkemåte for samme brukers ytring.

Dette er de ulike diskusjonstilstandene:

  • Start samtalen: agent har ingen kontekst, så en brukerytring forventes å enten: utløse et emne direkte (intensjonsgjenkjenning), utløse et "mente du" (flere emner matchet) tvetydighetsspørsmål blant intensjonskandidater hvis det er flere samsvarende emner, eller gå til et reserveemne hvis hensikten ikke gjenkjennes.
  • Etter at "mente du" (Samsvarte med flere emner) er utløst: NLU optimaliseres for å samsvare med et av de foreslåtte emnene, med høyere terskler for å flytte ut av de presenterte alternativene.
  • Bytte fra gjeldende emne: Hvis NLU prøver å fylle ut en spor i et emne, og brukeren gir en brukerspørring som kan utløse et annet emne (emnebytting).

Ved tegnsetting

NLU-modellen er agnostisk til tegnsetting, inkludert spørsmålstegn.

Opprette nye utløseruttrykk

Hvis mulig, starter du med virkelige produksjonsdata i stedet for å lage dine egne utløseruttrykk. De beste utløserfrasene er de som ligner på faktiske data som kommer fra brukere. Disse setningene er de som brukerne spør en distribuert agent.

Du trenger ikke legge igjen bestemte ord: Modellen er utformet for å gi mindre vekt på unødvendige ord, for eksempel stoppord (ord som filtreres ut før behandling av data for naturlig språk fordi de er ubetydelige).

Optimalisere utløseruttrykk

# Tips Eksempler
1 Ha minst 5-10 utløseruttrykk per emne
Gjenta og legg til mer etter hvert som du lærer fra brukere.
Finn min nærmeste butikk
Kontroller lagringssted
Finn en butikk
Finn ditt nærmeste sted
Butikk i nærheten
2 Varierer setningsstruktur og nøkkeltermer
Modellen vurderer automatisk variasjoner av disse uttrykkene.
Når er det stengt
Daglige åpningstider
3 Bruk korte utløseruttrykk
Færre enn 10 ord.
Når er det åpent
4 Unngå utløseruttrykk med ett ord
Dette øker vekten for bestemte ord i emneutløsing.
Det kan føre til forvirring mellom lignende emner.
Lagre
5 Bruke fullstendige uttrykk Kan jeg snakke med en menneskelig assistent
6 Har unike verb og substantiver eller kombinasjoner av disse Jeg trenger kundeservice
Jeg vil snakke med en konsulent
7 Unngå å bruke samme enhetsvariasjon
Du trenger ikke bruke alle eksemplene fra enhetsverdien.
NLU tar automatisk hensyn til alle variasjonene.
Jeg vil bestille en burger
Jeg vil gjerne ha en pizza
Jeg vil ha kyllingnuggets

Balanser antall utløseruttrykk per emne

Prøv å balansere antall utløseruttrykk mellom emner.

Tips

På den måten legger ikke NLU-funksjonene mer vekt på et emne sammenlignet med andre basert på de konfigurerte utløseruttrykkene.

Vurdere virkningen av endringene

Når du oppdaterer utløseruttrykk, eller ved sammenslåing eller deling av emner, kan du vurdere endringene på flere måter:

  • En umiddelbar endring i agentfunksjonalitet, som kan observeres via lerretet «testagent» (for eksempel et emne som nå utløses eller ikke basert på oppdateringer av utløseruttrykk).
  • En endring etter agentdistribusjon og møte med trafikk, som betyr høyere eller lavere avledningsprosent (ikke-eskalering). Dette kan observeres fra analysefanen i Copilot Studio.

Tips

Du kan teste emneutløsning og hvordan modellen for naturlig språkforståelse yter mot testdataene, ved å bruke Copilot Test Framework.

Selv om underliggende funksjoner og komponenter som ble brukt til å bygge Copilot Test Framework (for eksempel samhandling med API-en for Direct Line), støttes fullstendig, representerer selve Copilot Test Framework eksempelimplementeringer av disse funksjonene.

Kundene og fellesskapet vårt kan bruke og justere Copilot Test Framework for å implementere massetesting. Hvis du får problemer med Copilot Test Framework, kan du rapportere problemet her: https://aka.ms/PVASamples. (Microsoft Kundestøtte hjelper deg ikke med problemer knyttet til disse eksemplene, men de hjelper deg med relaterte, underliggende plattform- og funksjonsproblemer.)