PIVOT, klauzula
Dotyczy: Databricks SQL Databricks Runtime
Przekształca wiersze table_reference, obracając unikatowe values określonego columnlist na oddzielne columns.
Składnia
table_reference PIVOT ( { aggregate_expression [ [ AS ] agg_column_alias ] } [, ...]
FOR column_list IN ( expression_list ) )
column_list
{ column_name |
( column_name [, ...] ) }
expression_list
{ expression [ AS ] [ column_alias ] |
{ ( expression [, ...] ) [ AS ] [ column_alias] } [, ...] ) }
Parameters
-
Identyfikuje temat
PIVOT
operacji. -
Wyrażenie dowolnego typu where wszystkich odwołań column
table_reference
to argumenty funkcji agregujących. -
Opcjonalny alias wyniku agregacji. Jeśli alias nie zostanie określony,
PIVOT
wygeneruje alias naaggregate_expression
podstawie elementu . column_list
set columns do obrotu.
-
column z
table_reference
.
-
expression_list
Mapuje values z
column_list
na aliasy column.-
Wyrażenie literału z typem, który shares jest najmniej wspólnym typem z odpowiednim
column_name
.Liczba wyrażeń w każdej krotki musi być zgodna z liczbą w elem
column_names
column_list
. -
Opcjonalny alias określający nazwę wygenerowanego column. Jeśli nie określono
PIVOT
aliasu, zostanie wygenerowany alias na podstawie parametruexpression
s.
-
Result
Tymczasowa table następującej postaci:
Wszystkie columns z wyniku pośredniego set dotyczącego
table_reference
, które nie zostały określone w żadnejaggregate_expression
anicolumn_list
.Te columns grupują columns.
Dla każdej kombinacji krotki
expression
iaggregate_expression
PIVOT
generuje jeden column. Typ jest typemaggregate_expression
.Jeśli istnieje tylko jeden
aggregate_expression
nazwa column jest używana przy użyciucolumn_alias
. W przeciwnym razie nazwa tocolumn_alias_agg_column_alias
.Wartość w każdej komórce jest wynikiem
aggregation_expression
użycia obiektuFILTER ( WHERE column_list IN (expression, ...)
.
Przykłady
-- A very basic PIVOT
-- Given a table with sales by quarter, return a table that returns sales across quarters per year.
> CREATE TEMP VIEW sales(year, quarter, region, sales) AS
VALUES (2018, 1, 'east', 100),
(2018, 2, 'east', 20),
(2018, 3, 'east', 40),
(2018, 4, 'east', 40),
(2019, 1, 'east', 120),
(2019, 2, 'east', 110),
(2019, 3, 'east', 80),
(2019, 4, 'east', 60),
(2018, 1, 'west', 105),
(2018, 2, 'west', 25),
(2018, 3, 'west', 45),
(2018, 4, 'west', 45),
(2019, 1, 'west', 125),
(2019, 2, 'west', 115),
(2019, 3, 'west', 85),
(2019, 4, 'west', 65);
> SELECT year, region, q1, q2, q3, q4
FROM sales
PIVOT (sum(sales) AS sales
FOR quarter
IN (1 AS q1, 2 AS q2, 3 AS q3, 4 AS q4));
2018 east 100 20 40 40
2019 east 120 110 80 60
2018 west 105 25 45 45
2019 west 125 115 85 65
-- The same query written without PIVOT
> SELECT year, region,
sum(sales) FILTER(WHERE quarter = 1) AS q1,
sum(sales) FILTER(WHERE quarter = 2) AS q2,
sum(sales) FILTER(WHERE quarter = 3) AS q2,
sum(sales) FILTER(WHERE quarter = 4) AS q4
FROM sales
GROUP BY year, region;
2018 east 100 20 40 40
2019 east 120 110 80 60
2018 west 105 25 45 45
2019 west 125 115 85 65
-- Also PIVOT on region
> SELECT year, q1_east, q1_west, q2_east, q2_west, q3_east, q3_west, q4_east, q4_west
FROM sales
PIVOT (sum(sales) AS sales
FOR (quarter, region)
IN ((1, 'east') AS q1_east, (1, 'west') AS q1_west, (2, 'east') AS q2_east, (2, 'west') AS q2_west,
(3, 'east') AS q3_east, (3, 'west') AS q3_west, (4, 'east') AS q4_east, (4, 'west') AS q4_west));
2018 100 105 20 25 40 45 40 45
2019 120 125 110 115 80 85 60 65
-- The same query written without PIVOT
> SELECT year,
sum(sales) FILTER(WHERE (quarter, region) IN ((1, 'east'))) AS q1_east,
sum(sales) FILTER(WHERE (quarter, region) IN ((1, 'west'))) AS q1_west,
sum(sales) FILTER(WHERE (quarter, region) IN ((2, 'east'))) AS q2_east,
sum(sales) FILTER(WHERE (quarter, region) IN ((2, 'west'))) AS q2_west,
sum(sales) FILTER(WHERE (quarter, region) IN ((3, 'east'))) AS q3_east,
sum(sales) FILTER(WHERE (quarter, region) IN ((3, 'west'))) AS q3_west,
sum(sales) FILTER(WHERE (quarter, region) IN ((4, 'east'))) AS q4_east,
sum(sales) FILTER(WHERE (quarter, region) IN ((4, 'west'))) AS q4_west
FROM sales
GROUP BY year;
2018 100 105 20 25 40 45 40 45
2019 120 125 110 115 80 85 60 65
-- To aggregate across regions the column must be removed from the input.
> SELECT year, q1, q2, q3, q4
FROM (SELECT year, quarter, sales FROM sales) AS s
PIVOT (sum(sales) AS sales
FOR quarter
IN (1 AS q1, 2 AS q2, 3 AS q3, 4 AS q4));
2018 205 45 85 85
2019 245 225 165 125
-- The same query without PIVOT
> SELECT year,
sum(sales) FILTER(WHERE quarter = 1) AS q1,
sum(sales) FILTER(WHERE quarter = 2) AS q2,
sum(sales) FILTER(WHERE quarter = 3) AS q3,
sum(sales) FILTER(WHERE quarter = 4) AS q4
FROM sales
GROUP BY year;
-- A PIVOT with multiple aggregations
> SELECT year, q1_total, q1_avg, q2_total, q2_avg, q3_total, q3_avg, q4_total, q4_avg
FROM (SELECT year, quarter, sales FROM sales) AS s
PIVOT (sum(sales) AS total, avg(sales) AS avg
FOR quarter
IN (1 AS q1, 2 AS q2, 3 AS q3, 4 AS q4));
2018 205 102.5 45 22.5 85 42.5 85 42.5
2019 245 122.5 225 112.5 165 82.5 125 62.5
-- The same query without PIVOT
> SELECT year,
sum(sales) FILTER(WHERE quarter = 1) AS q1_total,
avg(sales) FILTER(WHERE quarter = 1) AS q1_avg,
sum(sales) FILTER(WHERE quarter = 2) AS q2_total,
avg(sales) FILTER(WHERE quarter = 2) AS q2_avg,
sum(sales) FILTER(WHERE quarter = 3) AS q3_total,
avg(sales) FILTER(WHERE quarter = 3) AS q3_avg,
sum(sales) FILTER(WHERE quarter = 4) AS q4_total,
avg(sales) FILTER(WHERE quarter = 4) AS q4_avg
FROM sales
GROUP BY year;
2018 205 102.5 45 22.5 85 42.5 85 42.5
2019 245 122.5 225 112.5 165 82.5 125 62.5