Databricks Runtime 10.5 para Machine Learning (EoS)
Observação
O suporte para esta versão do Databricks Runtime foi encerrado. Para obter a data de fim do suporte, consulte o Histórico de fim do suporte. Para todas as versões compatíveis do Databricks Runtime, consulte Versões e compatibilidade de notas sobre a versão do Databricks Runtime.
O Databricks Runtime 10.5 para Machine Learning fornece um ambiente pronto para uso em aprendizado de máquina e ciência de dados com base no Databricks Runtime 10.5 (EoS). O Databricks Runtime ML contém muitas bibliotecas de aprendizado de máquina populares, inclusive TensorFlow, PyTorch e XGBoost. O Databricks Runtime ML inclui o AutoML, uma ferramenta para treinamento automático de pipelines de aprendizado de máquina. O Databricks Runtime ML também oferece suporte ao treinamento de aprendizado profundo distribuído com o uso do Horovod.
Para obter mais informações, incluindo instruções para criar um cluster de ML do Databricks Runtime, confira IA e Machine Learning no Databricks.
Novos recursos e aprimoramentos
O Databricks Runtime 10.5 ML foi desenvolvido com base no Databricks Runtime 10.5. Para obter informações sobre as novidades do Databricks Runtime 10.5, inclusive o Apache Spark MLlib e o SparkR, confira as notas sobre a versão do Databricks Runtime 10.5 (EoS).
Aprimoramentos no AutoML
Os aprimoramentos a seguir foram feitos no AutoML.
- O uso aprimorado de memória permite que o AutoML treine em conjuntos de dados maiores.
- Com a previsão do AutoML, agora você pode exportar as previsões do melhor modelo para uma tabela usando a API. Se
output_database
for fornecido, o AutoML salvará previsões do melhor modelo para uma nova tabela no banco de dados especificado. As previsões não serão salvas seoutput_database
não for especificado.
Aprimoramentos no Databricks Feature Store
Foram feitos os seguintes aprimoramentos no Databricks Feature Store.
- Agora você pode excluir uma tabela de recursos existente com a API
drop_table
. Essa ação também remove a tabela Delta subjacente. - Agora você pode usar a API Python do repositório de recursos do espaço de trabalho e a engenharia de recursos para adicionar uma marca a uma tabela de recursos quando você criar ou registrar a tabela e adicionar, atualizar, excluir ou ler marcas em tabelas de recursos existentes.
Ambiente do sistema
O ambiente do sistema no Databricks Runtime 10.5 ML é diferente do Databricks Runtime 10.5 nestes aspectos:
- DBUtils: o Databricks Runtime ML não inclui Utilitário de biblioteca (dbutils.library) (herdado).
Use os comandos
%pip
. Confira as bibliotecas Python no escopo do notebook. - Para clusters de GPU, o Databricks Runtime ML inclui as seguintes bibliotecas de GPU NVIDIA:
- CUDA 11.0
- cuDNN 8.0.5.39
- NCCL 2.10.3
- TensorRT 7.2.2
Bibliotecas
As seções a seguir listam as bibliotecas incluídas no Databricks Runtime 10.5 ML que são diferentes daquelas incluídas no Databricks Runtime 10.5.
Nesta seção:
- Bibliotecas de camada superior
- Bibliotecas do Python
- Bibliotecas do R
- Bibliotecas do Java e do Scala (cluster do Scala 2.12)
Bibliotecas de camada superior
O Databricks Runtime 10.5 ML inclui as seguintes bibliotecas de camada superior:
- GraphFrames
- Horovod e HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
Bibliotecas do Python
O Databricks Runtime 10.5 ML usa o Virtualenv para gerenciamento de pacotes do Python e inclui muitos pacotes de ML bastante populares.
Além dos pacotes especificados nas seções a seguir, o Databricks Runtime 10.5 ML também inclui os seguintes pacotes:
- hyperopt 0.2.7.db1
- sparkdl 2.2.0-db6
- feature_store 0.4.1
- automl 1.8.0
Bibliotecas do Python em clusters de CPU
Biblioteca | Versão | Biblioteca | Versão | Biblioteca | Versão |
---|---|---|---|---|---|
absl-py | 0.11.0 | Antergos Linux | 2015.10 (atualização cumulativa de ISO) | appdirs | 1.4.4 |
argon2-cffi | 20.1.0 | astor | 0.8.1 | astunparse | 1.6.3 |
async-generator | 1,10 | attrs | 20.3.0 | backcall | 0.2.0 |
bcrypt | 3.2.0 | bidict | 0.21.4 | bleach | 3.3.0 |
blis | 0.7.7 | boto3 | 1.16.7 | botocore | 1.19.7 |
cachetools | 4.2.4 | catalogue | 2.0.7 | certifi | 2020.12.5 |
cffi | 1.14.5 | chardet | 4.0.0 | clique | 7.1.2 |
cloudpickle | 1.6.0 | cmdstanpy | 0.9.68 | configparser | 5.0.1 |
convertdate | 2.4.0 | criptografia | 3.4.7 | cycler | 0.10.0 |
cymem | 2.0.6 | Cython | 0.29.23 | databricks-automl-runtime | 0.2.7 |
databricks-cli | 0.16.4 | dbl-tempo | 0.1.2 | dbus-python | 1.2.16 |
decorator | 5.0.6 | defusedxml | 0.7.1 | dill | 0.3.2 |
diskcache | 5.4.0 | distlib | 0.3.4 | distro-info | 0.23ubuntu1 |
entrypoints | 0.3 | ephem | 4.1.3 | facets-overview | 1.0.0 |
fasttext | 0.9.2 | filelock | 3.0.12 | Flask | 1.1.2 |
flatbuffers | 2,0 | fsspec | 0.9.0 | future | 0.18.2 |
gast | 0.4.0 | gitdb | 4.0.9 | GitPython | 3.1.12 |
google-auth | 1.22.1 | google-auth-oauthlib | 0.4.2 | google-pasta | 0.2.0 |
grpcio | 1.39.0 | gunicorn | 20.0.4 | gviz-api | 1.10.0 |
h5py | 3.1.0 | hijri-converter | 2.2.3 | holidays | 0.13 |
horovod | 0.23.0 | htmlmin | 0.1.12 | huggingface-hub | 0.5.1 |
idna | 2.10 | ImageHash | 4.2.1 | imbalanced-learn | 0.8.1 |
importlib-metadata | 3.10.0 | ipykernel | 5.3.4 | ipython | 7.22.0 |
ipython-genutils | 0.2.0 | ipywidgets | 7.6.3 | isodate | 0.6.0 |
itsdangerous | 1.1.0 | jedi | 0.17.2 | Jinja2 | 2.11.3 |
jmespath | 0.10.0 | joblib | 1.0.1 | joblibspark | 0.3.0 |
jsonschema | 3.2.0 | jupyter-client | 6.1.12 | jupyter-core | 4.7.1 |
jupyterlab-pygments | 0.1.2 | jupyterlab-widgets | 1.0.0 | keras | 2.8.0 |
Keras-Preprocessing | 1.1.2 | kiwisolver | 1.3.1 | koalas | 1.8.2 |
korean-lunar-calendar | 0.2.1 | langcodes | 3.3.0 | libclang | 13.0.0 |
lightgbm | 3.3.2 | llvmlite | 0.38.0 | LunarCalendar | 0.0.9 |
Mako | 1.1.3 | Markdown | 3.3.3 | MarkupSafe | 2.0.1 |
matplotlib | 3.4.2 | missingno | 0.5.1 | mistune | 0.8.4 |
mleap | 0.18.1 | mlflow-skinny | 1.24.0 | multimethod | 1.8 |
murmurhash | 1.0.6 | nbclient | 0.5.3 | nbconvert | 6.0.7 |
nbformat | 5.1.3 | nest-asyncio | 1.5.1 | networkx | 2.5 |
nltk | 3.6.1 | notebook | 6.3.0 | numba | 0.55.1 |
numpy | 1.20.1 | oauthlib | 3.1.0 | opt-einsum | 3.3.0 |
empacotando | 21.3 | pandas | 1.2.4 | pandas-profiling | 3.1.0 |
pandocfilters | 1.4.3 | paramiko | 2.7.2 | parso | 0.7.0 |
pathy | 0.6.1 | patsy | 0.5.1 | petastorm | 0.11.4 |
pexpect | 4.8.0 | phik | 0.12.2 | pickleshare | 0.7.5 |
Pillow | 8.2.0 | pip | 21.0.1 | plotly | 5.6.0 |
pmdarima | 1.8.5 | preshed | 3.0.6 | prometheus-client | 0.10.1 |
prompt-toolkit | 3.0.17 | prophet | 1.0.1 | protobuf | 3.17.2 |
psutil | 5.8.0 | psycopg2 | 2.8.5 | ptyprocess | 0.7.0 |
pyarrow | 4.0.0 | pyasn1 | 0.4.8 | pyasn1-modules | 0.2.8 |
pybind11 | 2.9.2 | pycparser | 2,20 | pydantic | 1.8.2 |
Pygments | 2.8.1 | PyGObject | 3.36.0 | PyMeeus | 0.5.11 |
PyNaCl | 1.5.0 | pyodbc | 4.0.30 | pyparsing | 2.4.7 |
pyrsistent | 0.17.3 | pystan | 2.19.1.1 | python-apt | 2.0.0+ubuntu0.20.4.7 |
python-dateutil | 2.8.1 | python-editor | 1.0.4 | python-engineio | 4.3.0 |
python-socketio | 5.4.1 | pytz | 2020.5 | PyWavelets | 1.1.1 |
PyYAML | 5.4.1 | pyzmq | 20.0.0 | regex | 2021.4.4 |
solicitações | 2.25.1 | requests-oauthlib | 1.3.0 | requests-unixsocket | 0.2.0 |
rsa | 4.8 | s3transfer | 0.3.7 | sacremoses | 0.0.49 |
scikit-learn | 0.24.1 | scipy | 1.6.2 | seaborn | 0.11.1 |
Send2Trash | 1.5.0 | setuptools | 52.0.0 | setuptools-git | 1,2 |
shap | 0.40.0 | simplejson | 3.17.2 | six | 1.15.0 |
slicer | 0.0.7 | smart-open | 5.2.1 | smmap | 3.0.5 |
spacy | 3.2.3 | spacy-legacy | 3.0.9 | spacy-loggers | 1.0.2 |
spark-tensorflow-distributor | 1.0.0 | sqlparse | 0.4.1 | srsly | 2.4.3 |
ssh-import-id | 5.10 | statsmodels | 0.12.2 | tabulate | 0.8.7 |
tangled-up-in-unicode | 0.1.0 | tenacity | 6.2.0 | tensorboard | 2.8.0 |
tensorboard-data-server | 0.6.1 | tensorboard-plugin-profile | 2.5.0 | tensorboard-plugin-wit | 1.8.1 |
tensorflow-cpu | 2.8.0 | tensorflow-estimator | 2.8.0 | tensorflow-io-gcs-filesystem | 0.24.0 |
termcolor | 1.1.0 | terminado | 0.9.4 | testpath | 0.4.4 |
tf-estimator-nightly | 2.8.0.dev2021122109 | thinc | 8.0.15 | threadpoolctl | 2.1.0 |
tokenizers | 0.12.1 | torch | 1.10.2+cpu | torchvision | 0.11.3+cpu |
tornado | 6.1 | tqdm | 4.59.0 | traitlets | 5.0.5 |
transformers | 4.17.0 | typer | 0.4.1 | typing-extensions | 3.7.4.3 |
ujson | 4.0.2 | unattended-upgrades | 0,1 | urllib3 | 1.25.11 |
virtualenv | 20.4.1 | visions | 0.7.4 | wasabi | 0.9.1 |
wcwidth | 0.2.5 | webencodings | 0.5.1 | websocket-client | 0.57.0 |
Werkzeug | 1.0.1 | wheel | 0.36.2 | widgetsnbextension | 3.5.1 |
wrapt | 1.12.1 | xgboost | 1.5.2 | zipp | 3.4.1 |
Bibliotecas do Python em clusters de GPU
Biblioteca | Versão | Biblioteca | Versão | Biblioteca | Versão |
---|---|---|---|---|---|
absl-py | 0.11.0 | Antergos Linux | 2015.10 (atualização cumulativa de ISO) | appdirs | 1.4.4 |
argon2-cffi | 20.1.0 | astor | 0.8.1 | astunparse | 1.6.3 |
async-generator | 1,10 | attrs | 20.3.0 | backcall | 0.2.0 |
bcrypt | 3.2.0 | bidict | 0.21.4 | bleach | 3.3.0 |
blis | 0.7.7 | boto3 | 1.16.7 | botocore | 1.19.7 |
cachetools | 4.2.4 | catalogue | 2.0.7 | certifi | 2020.12.5 |
cffi | 1.14.5 | chardet | 4.0.0 | clique | 7.1.2 |
cloudpickle | 1.6.0 | cmdstanpy | 0.9.68 | configparser | 5.0.1 |
convertdate | 2.4.0 | criptografia | 3.4.7 | cycler | 0.10.0 |
cymem | 2.0.6 | Cython | 0.29.23 | databricks-automl-runtime | 0.2.7 |
databricks-cli | 0.16.4 | dbl-tempo | 0.1.2 | dbus-python | 1.2.16 |
decorator | 5.0.6 | defusedxml | 0.7.1 | dill | 0.3.2 |
diskcache | 5.4.0 | distlib | 0.3.4 | distro-info | 0.23ubuntu1 |
entrypoints | 0.3 | ephem | 4.1.3 | facets-overview | 1.0.0 |
fasttext | 0.9.2 | filelock | 3.0.12 | Flask | 1.1.2 |
flatbuffers | 2,0 | fsspec | 0.9.0 | future | 0.18.2 |
gast | 0.4.0 | gitdb | 4.0.9 | GitPython | 3.1.12 |
google-auth | 1.22.1 | google-auth-oauthlib | 0.4.2 | google-pasta | 0.2.0 |
grpcio | 1.39.0 | gunicorn | 20.0.4 | gviz-api | 1.10.0 |
h5py | 3.1.0 | hijri-converter | 2.2.3 | holidays | 0.13 |
horovod | 0.23.0 | htmlmin | 0.1.12 | huggingface-hub | 0.5.1 |
idna | 2.10 | ImageHash | 4.2.1 | imbalanced-learn | 0.8.1 |
importlib-metadata | 3.10.0 | ipykernel | 5.3.4 | ipython | 7.22.0 |
ipython-genutils | 0.2.0 | ipywidgets | 7.6.3 | isodate | 0.6.0 |
itsdangerous | 1.1.0 | jedi | 0.17.2 | Jinja2 | 2.11.3 |
jmespath | 0.10.0 | joblib | 1.0.1 | joblibspark | 0.3.0 |
jsonschema | 3.2.0 | jupyter-client | 6.1.12 | jupyter-core | 4.7.1 |
jupyterlab-pygments | 0.1.2 | jupyterlab-widgets | 1.0.0 | keras | 2.8.0 |
Keras-Preprocessing | 1.1.2 | kiwisolver | 1.3.1 | koalas | 1.8.2 |
korean-lunar-calendar | 0.2.1 | langcodes | 3.3.0 | libclang | 13.0.0 |
lightgbm | 3.3.2 | llvmlite | 0.38.0 | LunarCalendar | 0.0.9 |
Mako | 1.1.3 | Markdown | 3.3.3 | MarkupSafe | 2.0.1 |
matplotlib | 3.4.2 | missingno | 0.5.1 | mistune | 0.8.4 |
mleap | 0.18.1 | mlflow-skinny | 1.24.0 | multimethod | 1.8 |
murmurhash | 1.0.6 | nbclient | 0.5.3 | nbconvert | 6.0.7 |
nbformat | 5.1.3 | nest-asyncio | 1.5.1 | networkx | 2.5 |
nltk | 3.6.1 | notebook | 6.3.0 | numba | 0.55.1 |
numpy | 1.20.1 | oauthlib | 3.1.0 | opt-einsum | 3.3.0 |
empacotando | 21.3 | pandas | 1.2.4 | pandas-profiling | 3.1.0 |
pandocfilters | 1.4.3 | paramiko | 2.7.2 | parso | 0.7.0 |
pathy | 0.6.1 | patsy | 0.5.1 | petastorm | 0.11.4 |
pexpect | 4.8.0 | phik | 0.12.2 | pickleshare | 0.7.5 |
Pillow | 8.2.0 | pip | 21.0.1 | plotly | 5.6.0 |
pmdarima | 1.8.5 | preshed | 3.0.6 | prompt-toolkit | 3.0.17 |
prophet | 1.0.1 | protobuf | 3.17.2 | psutil | 5.8.0 |
psycopg2 | 2.8.5 | ptyprocess | 0.7.0 | pyarrow | 4.0.0 |
pyasn1 | 0.4.8 | pyasn1-modules | 0.2.8 | pybind11 | 2.9.2 |
pycparser | 2,20 | pydantic | 1.8.2 | Pygments | 2.8.1 |
PyGObject | 3.36.0 | PyMeeus | 0.5.11 | PyNaCl | 1.5.0 |
pyodbc | 4.0.30 | pyparsing | 2.4.7 | pyrsistent | 0.17.3 |
pystan | 2.19.1.1 | python-apt | 2.0.0+ubuntu0.20.4.7 | python-dateutil | 2.8.1 |
python-editor | 1.0.4 | python-engineio | 4.3.0 | python-socketio | 5.4.1 |
pytz | 2020.5 | PyWavelets | 1.1.1 | PyYAML | 5.4.1 |
pyzmq | 20.0.0 | regex | 2021.4.4 | solicitações | 2.25.1 |
requests-oauthlib | 1.3.0 | requests-unixsocket | 0.2.0 | rsa | 4.8 |
s3transfer | 0.3.7 | sacremoses | 0.0.49 | scikit-learn | 0.24.1 |
scipy | 1.6.2 | seaborn | 0.11.1 | Send2Trash | 1.5.0 |
setuptools | 52.0.0 | setuptools-git | 1,2 | shap | 0.40.0 |
simplejson | 3.17.2 | six | 1.15.0 | slicer | 0.0.7 |
smart-open | 5.2.1 | smmap | 3.0.5 | spacy | 3.2.3 |
spacy-legacy | 3.0.9 | spacy-loggers | 1.0.2 | spark-tensorflow-distributor | 1.0.0 |
sqlparse | 0.4.1 | srsly | 2.4.3 | ssh-import-id | 5.10 |
statsmodels | 0.12.2 | tabulate | 0.8.7 | tangled-up-in-unicode | 0.1.0 |
tenacity | 6.2.0 | tensorboard | 2.8.0 | tensorboard-data-server | 0.6.1 |
tensorboard-plugin-profile | 2.5.0 | tensorboard-plugin-wit | 1.8.1 | tensorflow | 2.8.0 |
tensorflow-estimator | 2.8.0 | tensorflow-io-gcs-filesystem | 0.24.0 | termcolor | 1.1.0 |
terminado | 0.9.4 | testpath | 0.4.4 | tf-estimator-nightly | 2.8.0.dev2021122109 |
thinc | 8.0.15 | threadpoolctl | 2.1.0 | tokenizers | 0.12.1 |
torch | 1.10.2+cu113 | torchvision | 0.11.3+cu113 | tornado | 6.1 |
tqdm | 4.59.0 | traitlets | 5.0.5 | transformers | 4.17.0 |
typer | 0.4.1 | typing-extensions | 3.7.4.3 | ujson | 4.0.2 |
unattended-upgrades | 0,1 | urllib3 | 1.25.11 | virtualenv | 20.4.1 |
visions | 0.7.4 | wasabi | 0.9.1 | wcwidth | 0.2.5 |
webencodings | 0.5.1 | websocket-client | 0.57.0 | Werkzeug | 1.0.1 |
wheel | 0.36.2 | widgetsnbextension | 3.5.1 | wrapt | 1.12.1 |
xgboost | 1.5.2 | zipp | 3.4.1 |
Pacotes do Spark que contêm módulos do Python
Pacote do Spark | Módulo do Python | Versão |
---|---|---|
graphframes | graphframes | 0.8.2-db1-spark3.2 |
Bibliotecas do R
As bibliotecas do R são idênticas às bibliotecas do R do Databricks Runtime 10.5.
Bibliotecas do Java e do Scala (cluster do Scala 2.12)
Além das bibliotecas do Java e do Scala no Databricks Runtime 10.5, o Databricks Runtime 10.5 ML contém os seguintes JARs:
Clusters de CPU
ID do Grupo | Artifact ID | Versão |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.18.1-23eb1ef |
ml.dmlc | xgboost4j-spark_2.12 | 1.5.2 |
ml.dmlc | xgboost4j_2.12 | 1.5.2 |
org.graphframes | graphframes_2.12 | 0.8.2-db1-spark3.2 |
org.mlflow | mlflow-client | 1.24.0 |
org.mlflow | mlflow-spark | 1.24.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |
Clusters de GPU
ID do Grupo | Artifact ID | Versão |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.18.1-23eb1ef |
ml.dmlc | xgboost4j-spark_2.12 | 1.5.2 |
ml.dmlc | xgboost4j_2.12 | 1.5.2 |
org.graphframes | graphframes_2.12 | 0.8.2-db1-spark3.2 |
org.mlflow | mlflow-client | 1.24.0 |
org.mlflow | mlflow-spark | 1.24.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |