TextCatalog.LatentDirichletAllocation Método
Definição
Importante
Algumas informações se referem a produtos de pré-lançamento que podem ser substancialmente modificados antes do lançamento. A Microsoft não oferece garantias, expressas ou implícitas, das informações aqui fornecidas.
Crie um LatentDirichletAllocationEstimator, que usa LightLDA para transformar texto (representado como um vetor de floats) em um vetor de Single indicação da semelhança do texto com cada tópico identificado.
public static Microsoft.ML.Transforms.Text.LatentDirichletAllocationEstimator LatentDirichletAllocation (this Microsoft.ML.TransformsCatalog.TextTransforms catalog, string outputColumnName, string inputColumnName = default, int numberOfTopics = 100, float alphaSum = 100, float beta = 0.01, int samplingStepCount = 4, int maximumNumberOfIterations = 200, int likelihoodInterval = 5, int numberOfThreads = 0, int maximumTokenCountPerDocument = 512, int numberOfSummaryTermsPerTopic = 10, int numberOfBurninIterations = 10, bool resetRandomGenerator = false);
static member LatentDirichletAllocation : Microsoft.ML.TransformsCatalog.TextTransforms * string * string * int * single * single * int * int * int * int * int * int * int * bool -> Microsoft.ML.Transforms.Text.LatentDirichletAllocationEstimator
<Extension()>
Public Function LatentDirichletAllocation (catalog As TransformsCatalog.TextTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional numberOfTopics As Integer = 100, Optional alphaSum As Single = 100, Optional beta As Single = 0.01, Optional samplingStepCount As Integer = 4, Optional maximumNumberOfIterations As Integer = 200, Optional likelihoodInterval As Integer = 5, Optional numberOfThreads As Integer = 0, Optional maximumTokenCountPerDocument As Integer = 512, Optional numberOfSummaryTermsPerTopic As Integer = 10, Optional numberOfBurninIterations As Integer = 10, Optional resetRandomGenerator As Boolean = false) As LatentDirichletAllocationEstimator
Parâmetros
- catalog
- TransformsCatalog.TextTransforms
O catálogo da transformação.
- outputColumnName
- String
Nome da coluna resultante da transformação de inputColumnName
.
Esse avaliador gera um vetor de Single.
- inputColumnName
- String
Nome da coluna a ser transformada. Se definido como null
, o valor do outputColumnName
será usado como origem.
Esse avaliador opera em um vetor de Single.
- numberOfTopics
- Int32
O número de tópicos.
- alphaSum
- Single
Dirichlet anterior em vetores de tópico de documento.
- beta
- Single
Dirichlet anterior em vetores de tópico vocab.
- samplingStepCount
- Int32
Número de etapas de Metrópolis Hasting.
- maximumNumberOfIterations
- Int32
Número de iterações.
- likelihoodInterval
- Int32
Probabilidade de log de computação sobre o conjunto de dados local nesse intervalo de iteração.
- numberOfThreads
- Int32
O número de threads de treinamento. O valor padrão depende do número de processadores lógicos.
- maximumTokenCountPerDocument
- Int32
O limite de contagem máxima de tokens por documento.
- numberOfSummaryTermsPerTopic
- Int32
O número de palavras para resumir o tópico.
- numberOfBurninIterations
- Int32
O número de iterações de burn-in.
- resetRandomGenerator
- Boolean
Redefina o gerador de número aleatório para cada documento.
Retornos
Exemplos
using System;
using System.Collections.Generic;
using Microsoft.ML;
namespace Samples.Dynamic
{
public static class LatentDirichletAllocation
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Create a small dataset as an IEnumerable.
var samples = new List<TextData>()
{
new TextData(){ Text = "ML.NET's LatentDirichletAllocation API " +
"computes topic models." },
new TextData(){ Text = "ML.NET's LatentDirichletAllocation API " +
"is the best for topic models." },
new TextData(){ Text = "I like to eat broccoli and bananas." },
new TextData(){ Text = "I eat bananas for breakfast." },
new TextData(){ Text = "This car is expensive compared to last " +
"week's price." },
new TextData(){ Text = "This car was $X last week." },
};
// Convert training data to IDataView.
var dataview = mlContext.Data.LoadFromEnumerable(samples);
// A pipeline for featurizing the text/string using
// LatentDirichletAllocation API. o be more accurate in computing the
// LDA features, the pipeline first normalizes text and removes stop
// words before passing tokens (the individual words, lower cased, with
// common words removed) to LatentDirichletAllocation.
var pipeline = mlContext.Transforms.Text.NormalizeText("NormalizedText",
"Text")
.Append(mlContext.Transforms.Text.TokenizeIntoWords("Tokens",
"NormalizedText"))
.Append(mlContext.Transforms.Text.RemoveDefaultStopWords("Tokens"))
.Append(mlContext.Transforms.Conversion.MapValueToKey("Tokens"))
.Append(mlContext.Transforms.Text.ProduceNgrams("Tokens"))
.Append(mlContext.Transforms.Text.LatentDirichletAllocation(
"Features", "Tokens", numberOfTopics: 3));
// Fit to data.
var transformer = pipeline.Fit(dataview);
// Create the prediction engine to get the LDA features extracted from
// the text.
var predictionEngine = mlContext.Model.CreatePredictionEngine<TextData,
TransformedTextData>(transformer);
// Convert the sample text into LDA features and print it.
PrintLdaFeatures(predictionEngine.Predict(samples[0]));
PrintLdaFeatures(predictionEngine.Predict(samples[1]));
// Features obtained post-transformation.
// For LatentDirichletAllocation, we had specified numTopic:3. Hence
// each prediction has been featurized as a vector of floats with length
// 3.
// Topic1 Topic2 Topic3
// 0.6364 0.2727 0.0909
// 0.5455 0.1818 0.2727
}
private static void PrintLdaFeatures(TransformedTextData prediction)
{
for (int i = 0; i < prediction.Features.Length; i++)
Console.Write($"{prediction.Features[i]:F4} ");
Console.WriteLine();
}
private class TextData
{
public string Text { get; set; }
}
private class TransformedTextData : TextData
{
public float[] Features { get; set; }
}
}
}