Partilhar via


Gerenciamento de recursos no Banco de Dados SQL do Azure

Aplica-se a: do Banco de Dados SQL do Azure

Este artigo fornece uma visão geral do gerenciamento de recursos no Banco de Dados SQL do Azure. Ele fornece informações sobre o que acontece quando os limites de recursos são atingidos e descreve os mecanismos de governança de recursos que são usados para impor esses limites.

Para limites de recursos específicos por camada de preço para bancos de dados únicos, consulte:

Para limites de recursos do pool elástico, consulte:

Para limites do pool SQL dedicado do Azure Synapse Analytics, consulte:

Limites vCore de subscrição por região

A partir de março de 2024, as assinaturas terão os seguintes limites vCore por região e por assinatura:

Tipo de subscrição Limites padrão do vCore
Contrato de Empresa (EA) 2000
Versões experimentais gratuitas 10
Microsoft para startups 100
MSDN / MPN / Imagine / AzurePass / Azure para estudantes 40
Pré-pagamento (PAYG) 150

Considere o seguinte:

  • Estes limites aplicam-se a subscrições novas e existentes.
  • Os bancos de dados e pools elásticos provisionados com o modelo de compra DTU são contados em relação à cota vCore e vice-versa. Cada vCore consumido é considerado equivalente a 100 DTUs consumidas para a cota no nível do servidor.
  • Os limites padrão incluem os vCores configurados para bancos de dados de computação provisionados/pools elásticos e os max vCores configurados para bancos de dados sem servidor.
  • Você pode usar o Usos da assinatura - Obter chamada da API REST para determinar seu uso atual do vCore para sua assinatura.
  • Para solicitar uma cota vCore maior do que o padrão, envie uma nova solicitação de suporte no portal do Azure. Para obter mais informações, consulte aumentos de cota de solicitação para o Banco de Dados SQL do Azure e a Instância Gerenciada do SQL.

Limites lógicos do servidor

Recurso Limite
Bancos de dados por servidor lógico 5000
Número padrão de servidores lógicos por assinatura em uma região 250
Número máximo de servidores lógicos por assinatura em uma região 250
Máximo de pools elásticos por servidor lógico Limitado pelo número de DTUs ou vCores. Por exemplo, se cada pool tiver 1000 DTUs, um servidor poderá suportar 54 pools.

Importante

À medida que o número de bancos de dados se aproxima do limite por servidor lógico, pode ocorrer o seguinte:

  • Aumentar a latência na execução de consultas no banco de dados master. Isso inclui exibições de estatísticas de utilização de recursos, como sys.resource_stats.
  • Aumentar a latência nas operações de gerenciamento e renderizar pontos de vista do portal que envolvem a enumeração de bancos de dados no servidor.

O que acontece quando os limites de recursos são atingidos

CPU de computação

Quando a utilização da CPU de computação do banco de dados se torna alta, a latência da consulta aumenta e as consultas podem até atingir o tempo limite. Nessas condições, as consultas podem ser enfileiradas pelo serviço e recebem recursos para execução à medida que os recursos se tornam gratuitos.

Se você observar alta utilização de computação, as opções de mitigação incluem:

Armazenamento

Quando o espaço de dados usado atinge o limite máximo de tamanho de dados, seja no nível do banco de dados ou no nível do pool elástico, as inserções e atualizações que aumentam o tamanho dos dados falham e os clientes recebem uma mensagem de erro . As instruções SELECT e DELETE permanecem inalteradas.

Nos níveis de serviço Premium e Business Critical, os clientes também recebem uma mensagem de erro se o consumo combinado de armazenamento por dados, log de transações e tempdb para um único banco de dados ou um pool elástico exceder o tamanho máximo de armazenamento local. Para obter mais informações, consulte Governança de espaço de armazenamento.

Se você observar uma alta utilização do espaço de armazenamento, as opções de mitigação incluem:

  • Aumente o tamanho máximo de dados do banco de dados ou do pool elástico ou aumente a escala para um objetivo de serviço com um limite máximo de tamanho de dados mais alto. Consulte Dimensionar recursos de banco de dados único e Dimensionar recursos de pool elástico.
  • Se o banco de dados estiver em um pool elástico, alternativamente, o banco de dados poderá ser movido para fora do pool, para que seu espaço de armazenamento não seja compartilhado com outros bancos de dados.
  • Reduza um banco de dados para recuperar espaço não utilizado. Para obter mais informações, consulte Gerenciar espaço de arquivo para bancos de dados.
    • Em pools elásticos, a redução de um banco de dados fornece mais armazenamento para outros bancos de dados no pool.
  • Verifique se a alta utilização de espaço se deve a um pico no tamanho do Armazenamento de Versão Persistente (PVS). O PVS faz parte de cada banco de dados e é usado para implementar recuperação acelerada de banco de dados. Para determinar o tamanho atual do PVS, consulte Solucionar problemas de recuperação acelerada de banco de dados. Uma razão comum para o tamanho PVS grande é uma transação que está aberta por um longo tempo (horas), impedindo a limpeza de versões mais antigas da linha no PVS.
  • Para bancos de dados e pools elásticos nas camadas de serviço Premium e Business Critical que consomem grandes quantidades de armazenamento, você pode receber um erro de falta de espaço mesmo que o espaço usado no banco de dados ou no pool elástico esteja abaixo de seu limite máximo de tamanho de dados. Isso pode acontecer se tempdb ou arquivos de log de transações consumirem uma grande quantidade de armazenamento em direção ao limite máximo de armazenamento local. Failover banco de dados ou pool elástico para redefinir tempdb para seu tamanho menor inicial ou reduzir log de transações para reduzir o consumo de armazenamento local.

Sessões, trabalhadores e solicitações

Sessões, trabalhadores e solicitações são definidos da seguinte forma:

  • Uma sessão representa um processo conectado ao mecanismo de banco de dados.
  • Uma solicitação é a representação lógica de uma consulta ou lote. Uma solicitação é emitida por um cliente conectado a uma sessão. Com o tempo, várias solicitações podem ser emitidas na mesma sessão.
  • Um thread de trabalho, também conhecido como worker ou thread, é uma representação lógica de um thread do sistema operacional. Uma solicitação pode ter muitos trabalhadores quando executada com um plano de execução de consulta paralela ou um único trabalhador quando executada com um plano de execução serial (thread único). Os trabalhadores também são obrigados a dar suporte a atividades fora das solicitações: por exemplo, um trabalhador é obrigado a processar uma solicitação de login quando uma sessão se conecta.

Para obter mais informações sobre esses conceitos, consulte o Thread e o guia de arquitetura de tarefas.

O número máximo de trabalhadores é determinado pela camada de serviço e pelo tamanho do cálculo. Novas solicitações são rejeitadas quando os limites de sessão ou de trabalho são atingidos e os clientes recebem uma mensagem de erro. Embora o número de conexões possa ser controlado pelo aplicativo, o número de trabalhadores simultâneos é muitas vezes mais difícil de estimar e controlar. Isso é especialmente verdadeiro durante os períodos de pico de carga, quando os limites de recursos do banco de dados são atingidos e os trabalhadores se acumulam devido a consultas de execução mais longas, grandes cadeias de bloqueio ou paralelismo excessivo de consultas.

Observação

A oferta inicial do Banco de Dados SQL do Azure dava suporte apenas a consultas de thread único. Nessa altura, o número de pedidos era sempre equivalente ao número de trabalhadores. A mensagem de erro 10928 no Banco de Dados SQL do Azure contém o The request limit for the database is *N* and has been reached de texto apenas para fins de compatibilidade com versões anteriores. O limite atingido é, na verdade, o número de trabalhadores.

Se sua configuração de grau máximo de paralelismo (MAXDOP) for igual a zero ou maior que um, o número de trabalhadores pode ser muito maior do que o número de solicitações, e o limite pode ser atingido muito mais cedo do que quando MAXDOP é igual a um.

Você pode reduzir a aproximação ou o atingimento dos limites de trabalho ou sessão:

Encontre limites de trabalho e sessão para o Banco de Dados SQL do Azure por camada de serviço e tamanho de computação:

Saiba mais sobre como solucionar erros específicos para limites de sessão ou de trabalho em Erros de governança de recursos.

Ligações externas

O número de conexões simultâneas com pontos de extremidade externos feitas via sp_invoke_external_rest_endpoint é limitado a 10% de threads de trabalho, com um limite rígido de no máximo 150 trabalhadores.

Memória

Ao contrário de outros recursos (CPU, trabalhadores, armazenamento), atingir o limite de memória não afeta negativamente o desempenho da consulta e não causa erros e falhas. Conforme descrito em detalhes no guia arquitetura de gerenciamento de memória, o mecanismo de banco de dados geralmente usa toda a memória disponível, por design. A memória é usada principalmente para armazenar dados em cache, para evitar um acesso mais lento ao armazenamento. Assim, a maior utilização de memória geralmente melhora o desempenho da consulta devido a leituras mais rápidas da memória, em vez de leituras mais lentas do armazenamento.

Após a inicialização do mecanismo de banco de dados, à medida que a carga de trabalho começa a ler dados do armazenamento, o mecanismo de banco de dados armazena dados agressivamente em cache na memória. Após esse período inicial de aceleração, é comum e esperado ver as colunas avg_memory_usage_percent e avg_instance_memory_percent em sys.dm_db_resource_statse a métrica sql_instance_memory_percent Azure Monitor estar próxima de 100%, especialmente para bancos de dados que não estão ociosos e não cabem totalmente na memória.

Observação

A métrica sql_instance_memory_percent reflete o consumo total de memória pelo mecanismo de banco de dados. Essa métrica pode não chegar a 100% mesmo quando cargas de trabalho de alta intensidade estão em execução. Isso ocorre porque uma pequena parte da memória disponível é reservada para alocações críticas de memória diferentes do cache de dados, como pilhas de threads e módulos executáveis.

Além do cache de dados, a memória é usada em outros componentes do mecanismo de banco de dados. Quando há demanda por memória e toda a memória disponível foi usada pelo cache de dados, o mecanismo de banco de dados reduz o tamanho do cache de dados para disponibilizar memória para outros componentes e aumenta dinamicamente o cache de dados quando outros componentes liberam memória.

Em casos raros, uma carga de trabalho suficientemente exigente pode causar uma condição de memória insuficiente, levando a erros de falta de memória. Erros de falta de memória podem acontecer em qualquer nível de utilização de memória entre 0% e 100%. Erros de falta de memória são mais prováveis de ocorrer em tamanhos de computação menores que têm limites de memória proporcionalmente menores e/ou com cargas de trabalho usando mais memória para processamento de consultas, como em pools elásticos densos .

Se você receber erros de falta de memória, as opções de mitigação incluem:

Solução Descrição
Reduzir o tamanho das concessões de memória Para obter mais informações sobre concessões de memória, consulte a postagem de blog Noções básicas sobre concessões de memória do SQL Server. Uma solução comum para evitar concessões de memória excessivamente grandes é manter estatísticas atualizadas. Isso resulta em estimativas mais precisas do consumo de memória pelo mecanismo de consulta, evitando grandes concessões de memória.

Por padrão, em bancos de dados que usam o nível de compatibilidade 140 e superior, o mecanismo de banco de dados pode ajustar automaticamente o tamanho da concessão de memória usando de feedback de concessão de memória no modo de lote. Da mesma forma, em bancos de dados que usam o nível de compatibilidade 150 e superior, o mecanismo de banco de dados também usa memória de concessão de feedback do modo de linha, para consultas de modo de linha mais comuns. Esta funcionalidade integrada ajuda a evitar erros de falta de memória devido a grandes concessões de memória.
Reduzir o tamanho do cache do plano de consulta O mecanismo de banco de dados armazena em cache planos de consulta na memória, para evitar a compilação de um plano de consulta para cada execução de consulta. Para evitar o inchaço do cache do plano de consulta causado por planos de cache que são usados apenas uma vez, certifique-se de usar consultas parametrizadas e considere habilitar OTIMIZE_FOR_AD_HOC_WORKLOADS configuração com escopo de banco de dados.
Reduzir o tamanho da memória de bloqueio O mecanismo de banco de dados usa memória para bloqueios. Quando possível, evite transações grandes que possam adquirir um grande número de bloqueios e causar um alto consumo de memória de bloqueio.

Consumo de recursos por cargas de trabalho de usuário e processos internos

O Banco de Dados SQL do Azure requer recursos de computação para implementar recursos de serviço principais, como alta disponibilidade e recuperação de desastres, backup e restauração de banco de dados, monitoramento, Repositório de Consultas, Ajuste automático, etc. O sistema reserva uma parte limitada dos recursos gerais para esses processos internos usando mecanismos de de governança de recursos , disponibilizando o restante dos recursos para cargas de trabalho do usuário. Às vezes, quando os processos internos não estão usando recursos de computação, o sistema os disponibiliza para cargas de trabalho do usuário.

O consumo total de CPU e memória por cargas de trabalho de usuário e processos internos é relatado nas visualizações sys.dm_db_resource_stats e sys.resource_stats, nas colunas avg_instance_cpu_percent e avg_instance_memory_percent. Esses dados também são relatados por meio das métricas sql_instance_cpu_percent e sql_instance_memory_percent Azure Monitor, para bancos de dados únicos e pools elásticos no nível do pool.

Observação

As métricas sql_instance_cpu_percent e sql_instance_memory_percent Azure Monitor estão disponíveis desde julho de 2023. Eles são totalmente equivalentes às métricas de sqlserver_process_core_percent e sqlserver_process_memory_percent disponíveis anteriormente, respectivamente. As duas últimas métricas permanecem disponíveis, mas serão removidas no futuro. Para evitar uma interrupção no monitoramento do banco de dados, não use as métricas mais antigas.

Essas métricas não estão disponíveis para bancos de dados que usam objetivos de serviço Basic, S1 e S2. Os mesmos dados estão disponíveis nas seguintes exibições de gerenciamento dinâmico.

O consumo de CPU e memória por cargas de trabalho de usuário em cada banco de dados é relatado nas exibições sys.dm_db_resource_stats e sys.resource_stats, nas colunas avg_cpu_percent e avg_memory_usage_percent. Para pools elásticos, o consumo de recursos no nível do pool é relatado na visualização sys.elastic_pool_resource_stats (para cenários históricos de relatórios) e em sys.dm_elastic_pool_resource_stats para monitoramento em tempo real. O consumo de CPU da carga de trabalho do usuário também é relatado por meio da métrica cpu_percent Azure Monitor, para bancos de dados únicos e pools elásticos no nível do pool.

Um detalhamento mais detalhado do consumo recente de recursos por cargas de trabalho de usuário e processos internos é relatado nas exibições sys.dm_resource_governor_resource_pools_history_ex e sys.dm_resource_governor_workload_groups_history_ex. Para obter detalhes sobre pools de recursos e grupos de carga de trabalho referenciados nessas exibições, consulte Governança de recursos. Essas exibições relatam a utilização de recursos por cargas de trabalho de usuário e processos internos específicos nos pools de recursos e grupos de carga de trabalho associados.

Dica

Ao monitorar ou solucionar problemas de desempenho da carga de trabalho, é importante considerar de consumo de CPU do usuário (avg_cpu_percent, cpu_percent) e consumo total de CPU por cargas de trabalho do usuário e processos internos (avg_instance_cpu_percent,sql_instance_cpu_percent). O desempenho pode ser visivelmente afetado se dessas métricas estiver no intervalo de 70 a 100%.

de consumo de CPU do usuário é definida como uma porcentagem em relação ao limite de CPU da carga de trabalho do usuário em cada objetivo de serviço. Da mesma forma, de consumo total da CPU é definida como a porcentagem em relação ao limite da CPU para todas as cargas de trabalho. Como os dois limites são diferentes, o usuário e o consumo total da CPU são medidos em escalas diferentes e não são diretamente comparáveis entre si.

Se de consumo de CPU do usuário atingir 100%, isso significa que a carga de trabalho do usuário está usando totalmente a capacidade da CPU disponível para ele no objetivo de serviço selecionado, mesmo que consumo total de CPU permaneça abaixo de 100%.

Quando consumo total de CPU atinge o intervalo de 70 a 100%, é possível ver o nivelamento da taxa de transferência da carga de trabalho do usuário e a latência de consulta aumentando, mesmo que consumo de CPU do usuário permaneça significativamente abaixo de 100%. É mais provável que isso ocorra ao usar objetivos de serviço menores com uma alocação moderada de recursos de computação, mas cargas de trabalho de usuário relativamente intensas, como em pools elásticos densos . Isso também pode ocorrer com objetivos de serviço menores quando os processos internos exigem temporariamente mais recursos, por exemplo, ao criar uma nova réplica do banco de dados ou ao fazer backup do banco de dados.

Da mesma forma, quando de consumo de CPU do usuário atinge o intervalo de 70 a 100%, a taxa de transferência da carga de trabalho do usuário se nivela e a latência da consulta aumenta, mesmo que de consumo total da CPU esteja bem abaixo de seu limite.

Quando de consumo de CPU do usuário ou de consumo total de CPU é alto, as opções de mitigação são as mesmas observadas na seção de CPU de computação e incluem aumento do objetivo do serviço e/ou otimização da carga de trabalho do usuário.

Observação

Mesmo em um banco de dados completamente ocioso ou pool elástico, consumo total de CPU nunca é zero devido às atividades do mecanismo de banco de dados em segundo plano. Ele pode flutuar em uma ampla gama dependendo das atividades específicas em segundo plano, do tamanho da computação e da carga de trabalho anterior do usuário.

Governação dos recursos

Para impor limites de recursos, o Banco de Dados SQL do Azure usa uma implementação de governança de recursos baseada no SQL Server Administrador de Recursos, modificada e estendida para execução na nuvem. No Banco de dados SQL, vários pools de recursos e grupos de carga de trabalho, com limites de recursos definidos nos níveis de pool e grupo, fornecem umde banco de dados como serviço balanceado. A carga de trabalho do usuário e as cargas de trabalho internas são classificadas em pools de recursos e grupos de carga de trabalho separados. A carga de trabalho do usuário nas réplicas primárias e secundárias legíveis, incluindo réplicas geográficas, é classificada no pool de recursos SloSharedPool1 e UserPrimaryGroup.DBId[N] grupos de carga de trabalho, onde [N] significa o valor de ID do banco de dados. Além disso, há vários pools de recursos e grupos de carga de trabalho para várias cargas de trabalho internas.

Além de usar o Administrador de Recursos para controlar recursos dentro do mecanismo de banco de dados, o Banco de Dados SQL do Azure também usa o Windows Job Objects para governança de recursos no nível do processo e o do Gerenciador de Recursos de Servidor de Arquivos (FSRM) do Windows para gerenciamento de cotas de armazenamento.

A governança de recursos do Banco de Dados SQL do Azure é hierárquica por natureza. De cima para baixo, os limites são impostos no nível do sistema operacional e no nível do volume de armazenamento usando mecanismos de governança de recursos do sistema operacional e o Administrador de Recursos, depois no nível do pool de recursos usando o Administrador de Recursos e, em seguida, no nível do grupo de carga de trabalho usando o Administrador de Recursos. Os limites de governança de recursos em vigor para o banco de dados atual ou pool elástico são relatados na exibição sys.dm_user_db_resource_governance.

Governança de E/S de dados

A governança de E/S de dados é um processo no Banco de Dados SQL do Azure usado para limitar E/S físicas de leitura e gravação em relação aos arquivos de dados de um banco de dados. Os limites de IOPS são definidos para cada nível de serviço para minimizar o efeito de "vizinho barulhento", para fornecer equidade de alocação de recursos em um serviço multilocatário e para permanecer dentro dos recursos do hardware e armazenamento subjacentes.

Para bancos de dados únicos, os limites do grupo de carga de trabalho são aplicados a todas as E/S de armazenamento em relação ao banco de dados. Para pools elásticos, os limites do grupo de carga de trabalho se aplicam a cada banco de dados no pool. Além disso, o limite do pool de recursos também se aplica à E/S cumulativa do pool elástico. Em tempdb, a E/S está sujeita a limites de grupo de carga de trabalho, exceto para a camada de serviço Básico, Padrão e de Uso Geral, onde se aplicam limites de E/S de tempdb mais altos. Em geral, os limites do pool de recursos podem não ser alcançados pela carga de trabalho em um banco de dados (único ou agrupado), porque os limites do grupo de carga de trabalho são menores do que os limites do pool de recursos e limitam IOPS/taxa de transferência mais cedo. No entanto, os limites do pool podem ser alcançados pela carga de trabalho combinada em vários bancos de dados no mesmo pool.

Por exemplo, se uma consulta gerar 1000 IOPS sem qualquer governança de recursos de E/S, mas o limite máximo de IOPS do grupo de carga de trabalho estiver definido como 900 IOPS, a consulta não poderá gerar mais de 900 IOPS. No entanto, se o limite máximo de IOPS do pool de recursos for definido como 1500 IOPS e a E/S total de todos os grupos de carga de trabalho associados ao pool de recursos exceder 1500 IOPS, a E/S da mesma consulta poderá ser reduzida abaixo do limite do grupo de trabalho de 900 IOPS.

Os valores IOPS e throughput max retornados pela visualização sys.dm_user_db_resource_governance atuam como limites/limites, não como garantias. Além disso, a governança de recursos não garante nenhuma latência de armazenamento específica. A melhor latência, IOPS e taxa de transferência alcançáveis para uma determinada carga de trabalho de usuário dependem não apenas dos limites de governança de recursos de E/S, mas também da combinação de tamanhos de E/S usados e dos recursos do armazenamento subjacente. O Banco de dados SQL usa operações de E/S que variam em tamanho entre 512 bytes e 4 MB. Para fins de imposição de limites de IOPS, cada E/S é contabilizada independentemente de seu tamanho, exceto bancos de dados com arquivos de dados no Armazenamento do Azure. Nesse caso, E/S maiores que 256 KB são contabilizadas como várias E/S de 256 KB, para alinhar com a contabilidade de E/S do Armazenamento do Azure.

Para bancos de dados Básicos, Padrão e de Uso Geral, que usam arquivos de dados no Armazenamento do Azure, o valor de primary_group_max_io pode não ser alcançável se um banco de dados não tiver arquivos de dados suficientes para fornecer cumulativamente esse número de IOPS, ou se os dados não forem distribuídos uniformemente entre arquivos, ou se a camada de desempenho de blobs subjacentes limitar IOPS/taxa de transferência abaixo dos limites de governança de recursos. Da mesma forma, com pequenas operações de E/S de log geradas por confirmações frequentes de transações, o valor de primary_max_log_rate pode não ser alcançável por uma carga de trabalho devido ao limite de IOPS no blob de Armazenamento do Azure subjacente. Para bancos de dados que usam o Armazenamento Premium do Azure, o Banco de Dados SQL do Azure usa blobs de armazenamento suficientemente grandes para obter IOPS/taxa de transferência necessária, independentemente do tamanho do banco de dados. Para bancos de dados maiores, vários arquivos de dados são criados para aumentar a capacidade total de IOPS/taxa de transferência.

Os valores de utilização de recursos, como avg_data_io_percent e avg_log_write_percent, relatados nas exibições sys.dm_db_resource_stats, sys.resource_stats, sys.dm_elastic_pool_resource_statse sys.elastic_pool_resource_stats, são calculados como porcentagens dos limites máximos de governança de recursos. Portanto, quando outros fatores além da governança de recursos limitam a taxa de transferência de IOPS, é possível ver IOPS/taxa de transferência se achatando e as latências aumentando à medida que a carga de trabalho aumenta, mesmo que a utilização de recursos relatada permaneça abaixo de 100%.

Para monitorar o IOPS de leitura e gravação, a taxa de transferência e a latência por arquivo de banco de dados, use a função sys.dm_io_virtual_file_stats(). Essa função exibe todas as E/S no banco de dados, incluindo E/S em segundo plano que não é contabilizada para avg_data_io_percent, mas usa IOPS e taxa de transferência do armazenamento subjacente e pode afetar a latência de armazenamento observada. A função relata latência adicional que pode ser introduzida pela governança de recursos de E/S para leituras e gravações, nas colunas io_stall_queued_read_ms e io_stall_queued_write_ms, respectivamente.

Governança da taxa de log de transações

A governança da taxa de log de transações é um processo no Banco de Dados SQL do Azure usado para limitar altas taxas de ingestão para cargas de trabalho, como inserção em massa, SELECT INTO e compilações de índice. Esses limites são rastreados e aplicados no nível de subsegundo à taxa de geração de registros de log, limitando a taxa de transferência, independentemente de quantas E/S podem ser emitidas em relação a arquivos de dados. Atualmente, as taxas de geração de logs de transações são dimensionadas linearmente até um ponto que depende do hardware e da camada de serviço.

As taxas de log são definidas de forma que possam ser alcançadas e sustentadas em vários cenários, enquanto o sistema geral pode manter sua funcionalidade com impacto minimizado na carga do usuário. A governança da taxa de log garante que os backups de log de transações permaneçam dentro dos SLAs de capacidade de recuperação publicados. Essa governança também evita um acúmulo excessivo em réplicas secundárias que, de outra forma, poderia levar a um tempo de inatividade maior do que o esperado durante os failovers.

As E/S físicas reais para arquivos de log de transações não são controladas ou limitadas. À medida que os registros de log são gerados, cada operação é avaliada e avaliada se deve ser atrasada para manter uma taxa de log máxima desejada (MB/s por segundo). Os atrasos não são adicionados quando os registros de log são liberados para o armazenamento, em vez disso, a governança da taxa de log é aplicada durante a própria geração da taxa de log.

As taxas reais de geração de log impostas em tempo de execução também são influenciadas por mecanismos de feedback, reduzindo temporariamente as taxas de log permitidas para que o sistema possa se estabilizar. O gerenciamento de espaço de arquivo de log, evitando a falta de espaço de log e os mecanismos de replicação de dados, podem diminuir temporariamente os limites gerais do sistema.

A modelagem de tráfego do regulador de taxa de log é exibida por meio dos seguintes tipos de espera (expostos nas visualizações sys.dm_exec_requests e sys.dm_os_wait_stats):

Tipo de espera Observações
LOG_RATE_GOVERNOR Limitação de banco de dados
POOL_LOG_RATE_GOVERNOR Limitação da piscina
INSTANCE_LOG_RATE_GOVERNOR Limitação do nível de instância
HADR_THROTTLE_LOG_RATE_SEND_RECV_QUEUE_SIZE Controle de feedback, replicação física de grupo de disponibilidade no Premium/Business Critical não acompanhando
HADR_THROTTLE_LOG_RATE_LOG_SIZE Controle de feedback, limitando as taxas para evitar uma condição de falta de espaço de log
HADR_THROTTLE_LOG_RATE_MISMATCHED_SLO Controle de feedback de replicação geográfica, limitando a taxa de log para evitar alta latência de dados e indisponibilidade de geosecundários

Ao encontrar um limite de taxa de log que esteja dificultando a escalabilidade desejada, considere as seguintes opções:

  • Escale para um nível de serviço mais alto para obter a taxa máxima de log de uma camada de serviço ou mude para uma camada de serviço diferente. A camada de serviço Hyperscale fornece taxa de log de 100 MB/s por banco de dados e 125 MB/s por pool elástico, independentemente do nível de serviço escolhido. A taxa de geração de logs de 150 MB/s está disponível como um recurso de visualização opcional. Para obter mais informações e optar por 150 MB/s, consulte Blog: Aprimoramentos de hiperescala de novembro de 2024.
  • Se os dados que estão sendo carregados forem transitórios, como dados de preparo em um processo ETL, eles podem ser carregados no tempdb (que é minimamente registrado).
  • Para cenários analíticos, carregue em uma tabela de columnstore de clusterizada ou em uma tabela com índices que usam compactação de dados. Isso reduz a taxa de log necessária. Essa técnica aumenta a utilização da CPU e só é aplicável a conjuntos de dados que se beneficiam de índices columnstore clusterizados ou compactação de dados.

Governança do espaço de armazenamento

Nas camadas de serviço Premium e Business Critical, os dados do cliente, incluindo arquivos de dados, arquivos de log de transações e arquivos tempdb, são armazenados no armazenamento SSD local da máquina que hospeda o banco de dados ou pool elástico. O armazenamento SSD local oferece alta IOPS e taxa de transferência, além de baixa latência de E/S. Além dos dados do cliente, o armazenamento local é usado para o sistema operacional, software de gerenciamento, dados e logs de monitoramento e outros arquivos necessários para a operação do sistema.

O tamanho do armazenamento local é finito e depende dos recursos de hardware, que determinam o limite máximo de de armazenamento local ou o armazenamento local reservado para os dados do cliente. Esse limite é definido para maximizar o armazenamento de dados do cliente, garantindo uma operação segura e confiável do sistema. Para encontrar o valor máximo de de armazenamento local para cada objetivo de serviço, consulte a documentação de limites de recursos para bancos de dados únicos e pools elásticos.

Você também pode encontrar esse valor e a quantidade de armazenamento local atualmente usada por um determinado banco de dados ou pool elástico, usando a seguinte consulta:

SELECT server_name, database_name, slo_name, user_data_directory_space_quota_mb, user_data_directory_space_usage_mb
FROM sys.dm_user_db_resource_governance
WHERE database_id = DB_ID();
Coluna Descrição
server_name Nome do servidor lógico
database_name Nome do banco de dados
slo_name Nome do objetivo do serviço, incluindo geração de hardware
user_data_directory_space_quota_mb Máximo de armazenamento local, em MB
user_data_directory_space_usage_mb Consumo atual de armazenamento local por arquivos de dados, arquivos de log de transações e arquivos tempdb, em MB. Atualizado a cada cinco minutos.

Essa consulta deve ser executada no banco de dados do usuário, não no banco de dados master. Para pools elásticos, a consulta pode ser executada em qualquer banco de dados do pool. Os valores relatados aplicam-se a todo o pool.

Importante

Nas camadas de serviço Premium e Business Critical, se a carga de trabalho tentar aumentar o consumo combinado de armazenamento local por arquivos de dados, arquivos de log de transações e arquivos acima do limite máximo de de armazenamento local de , ocorrerá um erro de falta de espaço. Isso acontecerá mesmo se o espaço usado em um arquivo de banco de dados não tiver atingido o tamanho máximo do arquivo.

O armazenamento SSD local também é usado por bancos de dados em camadas de serviço diferentes de Premium e Business Critical para o banco de dados tempdb e o cache RBPEX Hyperscale. À medida que os bancos de dados são criados, excluídos e aumentam ou diminuem de tamanho, o consumo total de armazenamento local em uma máquina flutua ao longo do tempo. Se o sistema detetar que o armazenamento local disponível em uma máquina é baixo e um banco de dados ou um pool elástico corre o risco de ficar sem espaço, ele move o banco de dados ou pool elástico para uma máquina diferente com armazenamento local suficiente disponível.

Essa movimentação ocorre de forma online, de forma semelhante a uma operação de dimensionamento de banco de dados, e tem um impacto semelhante, incluindo um failover curto (segundos) no final da operação. Esse failover encerra conexões abertas e reverte transações, potencialmente afetando os aplicativos que usam o banco de dados naquele momento.

Como todos os dados são copiados para volumes de armazenamento local em máquinas diferentes, mover bancos de dados maiores nas camadas de serviço Premium e Business Critical pode exigir uma quantidade substancial de tempo. Durante esse tempo, se o consumo de espaço local por um banco de dados ou um pool elástico, ou pelo banco de dados tempdb crescer rapidamente, o risco de ficar sem espaço aumenta. O sistema inicia a movimentação do banco de dados de forma equilibrada para minimizar erros de falta de espaço, evitando failovers desnecessários.

tempdb tamanhos

Os limites de tamanho para tempdb no Banco de Dados SQL do Azure dependem do modelo de compra e implantação.

Para saber mais, consulte tempdb limites de tamanho para:

Hardware disponível anteriormente

Esta seção inclui detalhes sobre o hardware disponível anteriormente.

  • O hardware Gen4 foi desativado e não está disponível para provisionamento, upscaling ou downscaling. Migre seu banco de dados para uma geração de hardware suportada para uma ampla gama de vCore e escalabilidade de armazenamento, rede acelerada, melhor desempenho de E/S e latência mínima. Para obter mais informações, consulte o suporte terminou para hardware Gen 4 no Banco de Dados SQL do Azure.

Você pode usar do Azure Resource Graph Explorer para identificar todos os recursos do Banco de Dados SQL do Azure que atualmente usam hardware Gen4 ou pode verificar o hardware usado pelos recursos para um de servidor lógico específico no portal do Azure.

Você deve ter pelo menos read permissões para o objeto ou grupo de objetos do Azure para ver os resultados no Azure Resource Graph Explorer.

Para usar Resource Graph Explorer para identificar recursos SQL do Azure que ainda estão usando hardware Gen4, siga estas etapas:

  1. Vá para o portal do Azure.

  2. Procure na caixa de pesquisa e escolha o serviço Resource Graph Explorer nos resultados da pesquisa.

  3. Na janela de consulta, digite a seguinte consulta e selecione Executar consulta:

    resources
    | where type contains ('microsoft.sql/servers')
    | where sku['family'] == "Gen4"
    
  4. O painel Resultados exibe todos os recursos atualmente implantados no Azure que estão usando hardware Gen4.

    Captura de ecrã do Azure Resources Graph Explorer no portal do Azure a mostrar os resultados da consulta para identificar hardware gen4.

Para verificar o hardware usado pelos recursos para um servidor lógico específico no Azure, siga estas etapas:

  1. Vá para o portal do Azure.
  2. Pesquise na caixa de pesquisa e escolha servidores SQL nos resultados da pesquisa para abrir a página SQL servers e exibir todos os servidores para a(s) assinatura(s) escolhida(s).
  3. Selecione o servidor de interesse para abrir a página Visão Geral do para o servidor.
  4. Role para baixo até os recursos disponíveis e verifique a coluna Camada de preços para recursos que estão usando hardware gen4.

Captura de tela da página Visão geral de um servidor lógico no Azure, a página de visão geral selecionada e gen4 realçada.

Para migrar recursos para hardware de série padrão, consulte Alterar hardware.