Databricks Runtime 6.2 para ML (EoS)
Nota
O suporte para esta versão do Databricks Runtime terminou. Para obter a data de fim do suporte, consulte Histórico de fim do suporte. Para todas as versões suportadas do Databricks Runtime, consulte Versões e compatibilidade das notas de versão do Databricks Runtime.
A Databricks lançou esta versão em dezembro de 2019.
O Databricks Runtime 6.2 for Machine Learning fornece um ambiente pronto para uso para aprendizado de máquina e ciência de dados com base no Databricks Runtime 6.2 (EoS). O Databricks Runtime ML contém muitas bibliotecas populares de aprendizado de máquina, incluindo TensorFlow, PyTorch, Keras e XGBoost. Ele também suporta treinamento distribuído de aprendizagem profunda usando Horovod.
Para obter mais informações, incluindo instruções para criar um cluster de ML do Databricks Runtime, consulte IA e aprendizado de máquina no Databricks.
Novas funcionalidades
O Databricks Runtime 6.2 ML é construído sobre o Databricks Runtime 6.2. Para obter informações sobre o que há de novo no Databricks Runtime 6.2, consulte as notas de versão do Databricks Runtime 6.2 (EoS ).
Melhorias
Bibliotecas de aprendizado de máquina atualizadas
TensorFlow e TensorBoard: 1.14.0 a 1.15.0. Existem dois problemas conhecidos:
- Talvez seja necessário importar módulos tensorflow explicitamente em sua função para evitar problemas de decapagem no PySpark, HorovodRunner, HyperOpt e outras bibliotecas de aprendizado de máquina.
- A guia Projetor no TensorBoard está em branco. Como solução alternativa, para visitar a página do projetor diretamente, você pode substituir
#projector
no URL pordata/plugin/projector/projector_binary.html
.
Keras: 2.2.4 a 2.2.5.
Nota
Se você usar o back-end do TensorFlow para Keras, o Databricks recomenda o uso
tf.keras
em vez disso.PyTorch: 1.2.0 a 1.3.0.
tensorboardX: 1.8 a 1.9.
Nota
Como o PyTorch agora suporta oficialmente o TensorBoard, removeremos o tensorboardX na próxima versão principal.
MLflow: 1.3.0 a 1.4.0.
- O registro automático de Keras e o TensorFlow e as APIs de persistência do modelo Keras agora são compatíveis com o TensorFlow 2.0.
- Novas
get_run
, ,get_experiment_by_name
funçõesget_experiment
Hyperopt: 0.2-db1 com integrações MLflow do Azure Databricks.
mleap-databricks-runtime para 0.15.0 e inclui mleap-xgboost-runtime.
Adicionado suporte para variáveis de transmissão para SparkTrials
Anteriormente, o Hyperopt com SparkTrials não podia ser usado com variáveis de transmissão do PySpark. Agora, as variáveis de transmissão podem ser incluídas na função fn
passada para fmin()
.
Preterições
Além das descontinuações no Databricks Runtime 6.2, os seguintes pacotes foram preteridos e serão removidos na próxima versão principal:
- TensorFrames. Em vez disso, use pandas UDF .
- Alguns módulos e classes no pacote
sparkdl
Python . Os principais são:sparkdl.HorovodEstimator
. Use o sparkdl. HorovodRunner em vez disso.sparkdl.graph
. Em vez disso, use um UDF de pandas.sparkdl.udf
. Em vez disso, use um UDF de pandas.- Os transformadores e estimadores usados nos dutos Spark ML foram preteridos. Use as seguintes alternativas:
Para obter mais detalhes e alternativas recomendadas, examine as mensagens de substituição ao usar esses pacotes em um bloco de anotações.
Correções de erros
No Databricks Community Edition, os trabalhadores do PySpark agora podem encontrar pacotes Spark pré-instalados.
Ambiente do sistema
O ambiente do sistema no Databricks Runtime 6.2 ML difere do Databricks Runtime 6.2 da seguinte forma:
- DBUtils: Não contém o utilitário Biblioteca (dbutils.library) (legado).
- Para clusters de GPU, as seguintes bibliotecas de GPU NVIDIA:
- NVIDIA driver 418,40
- CUDA 10,0
- cuDNN 7.6.4
- NCCL 2.4.7
Bibliotecas
As seções a seguir listam as bibliotecas incluídas no Databricks Runtime 6.2 ML que diferem daquelas incluídas no Databricks Runtime 6.2.
Nesta secção:
- Bibliotecas de nível superior
- Bibliotecas Python
- Bibliotecas R
- Bibliotecas Java e Scala (cluster Scala 2.11)
Bibliotecas de nível superior
O Databricks Runtime 6.2 ML inclui as seguintes bibliotecas de camada superior:
- GraphFrames
- Horovod e HorovodRunner
- MLflow
- PyTorch
- conector spark-tensorflow;
- TensorFlow
- TensorBoard
Bibliotecas Python
O Databricks Runtime 6.2 ML usa o Conda para gerenciamento de pacotes Python e inclui muitos pacotes de ML populares. A seção a seguir descreve o ambiente Conda para Databricks Runtime 6.2 ML.
Python em clusters de CPU
name: databricks-ml
channels:
- Databricks
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _py-xgboost-mutex=2.0=cpu_0
- _tflow_select=2.3.0=mkl
- absl-py=0.8.1=py37_0
- asn1crypto=0.24.0=py37_0
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.7=py37h7b6447c_0
- blas=1.0=mkl
- boto=2.49.0=py37_0
- boto3=1.9.162=py_0
- botocore=1.12.163=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2019.1.23=0
- certifi=2019.3.9=py37_0
- cffi=1.12.2=py37h2e261b9_1
- chardet=3.0.4=py37_1003
- click=7.0=py_0
- cloudpickle=0.8.0=py37_0
- colorama=0.4.1=py_0
- configparser=3.7.4=py37_0
- cpuonly=1.0=0
- cryptography=2.6.1=py37h1ba5d50_0
- cycler=0.10.0=py37_0
- cython=0.29.6=py37he6710b0_0
- decorator=4.4.0=py37_1
- docutils=0.14=py37_0
- entrypoints=0.3=py37_0
- et_xmlfile=1.0.1=py37_0
- flask=1.0.2=py37_1
- freetype=2.9.1=h8a8886c_1
- future=0.17.1=py37_0
- gast=0.2.2=py37_0
- gitdb2=2.0.6=py_0
- gitpython=2.1.11=py37_0
- google-pasta=0.1.8=py_0
- grpcio=1.16.1=py37hf8bcb03_1
- gunicorn=19.9.0=py37_0
- h5py=2.9.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- html5lib=1.0.1=py_0
- icu=58.2=h9c2bf20_1
- idna=2.8=py37_0
- intel-openmp=2019.3=199
- ipython=7.4.0=py37h39e3cac_0
- ipython_genutils=0.2.0=py37_0
- itsdangerous=1.1.0=py_0
- jdcal=1.4=py37_0
- jedi=0.13.3=py37_0
- jinja2=2.10=py37_0
- jmespath=0.9.4=py_0
- jpeg=9b=h024ee3a_2
- keras-applications=1.0.8=py_0
- keras-preprocessing=1.1.0=py_1
- kiwisolver=1.0.1=py37hf484d3e_0
- krb5=1.16.1=h173b8e3_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=8.2.0=hdf63c60_1
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.36=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.9.2=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=8.2.0=hdf63c60_1
- libtiff=4.0.10=h2733197_2
- libxgboost=0.90=he6710b0_1
- libxml2=2.9.9=hea5a465_1
- libxslt=1.1.33=h7d1a2b0_0
- llvmlite=0.28.0=py37hd408876_0
- lxml=4.3.2=py37hefd8a0e_0
- mako=1.0.10=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- mkl=2019.3=199
- mkl_fft=1.0.10=py37ha843d7b_0
- mkl_random=1.0.2=py37hd81dba3_0
- ncurses=6.1=he6710b0_1
- networkx=2.2=py37_1
- ninja=1.9.0=py37hfd86e86_0
- nose=1.3.7=py37_2
- numba=0.43.1=py37h962f231_0
- numpy=1.16.2=py37h7e9f1db_0
- numpy-base=1.16.2=py37hde5b4d6_0
- olefile=0.46=py_0
- openpyxl=2.6.1=py37_1
- openssl=1.1.1b=h7b6447c_1
- opt_einsum=3.1.0=py_0
- pandas=0.24.2=py37he6710b0_0
- paramiko=2.4.2=py37_0
- parso=0.3.4=py37_0
- pathlib2=2.3.3=py37_0
- patsy=0.5.1=py37_0
- pexpect=4.6.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=5.4.1=py37h34e0f95_0
- pip=19.0.3=py37_0
- ply=3.11=py37_0
- prompt_toolkit=2.0.9=py37_0
- protobuf=3.9.2=py37he6710b0_0
- psutil=5.6.1=py37h7b6447c_0
- psycopg2=2.7.6.1=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- py-xgboost=0.90=py37he6710b0_1
- py-xgboost-cpu=0.90=py37_1
- pyasn1=0.4.8=py_0
- pycparser=2.19=py_0
- pygments=2.3.1=py37_0
- pymongo=3.8.0=py37he6710b0_1
- pynacl=1.3.0=py37h7b6447c_0
- pyopenssl=19.0.0=py37_0
- pyparsing=2.3.1=py37_0
- pysocks=1.6.8=py37_0
- python=3.7.3=h0371630_0
- python-dateutil=2.8.0=py37_0
- python-editor=1.0.4=py_0
- pytorch=1.3.0=py3.7_cpu_0
- pytz=2018.9=py37_0
- pyyaml=5.1=py37h7b6447c_0
- readline=7.0=h7b6447c_5
- requests=2.21.0=py37_0
- s3transfer=0.2.1=py37_0
- scikit-learn=0.20.3=py37hd81dba3_0
- scipy=1.2.1=py37h7c811a0_0
- setuptools=40.8.0=py37_0
- simplejson=3.16.0=py37h14c3975_0
- singledispatch=3.4.0.3=py37_0
- six=1.12.0=py37_0
- smmap2=2.0.5=py_0
- sqlite=3.27.2=h7b6447c_0
- sqlparse=0.3.0=py_0
- statsmodels=0.9.0=py37h035aef0_0
- tabulate=0.8.3=py37_0
- tensorboard=1.15.0+db2=pyhb230dea_0
- tensorflow=1.15.0+db2=mkl_py37hc5fbf04_0
- tensorflow-base=1.15.0+db2=mkl_py37h2ae1e84_0
- tensorflow-estimator=1.15.1+db2=pyh2649769_0
- tensorflow-mkl=1.15.0+db2=h4fcabd2_0
- termcolor=1.1.0=py37_1
- tk=8.6.8=hbc83047_0
- torchvision=0.4.1=py37_cpu
- tqdm=4.31.1=py37_1
- traitlets=4.3.2=py37_0
- urllib3=1.24.1=py37_0
- virtualenv=16.0.0=py37_0
- wcwidth=0.1.7=py37_0
- webencodings=0.5.1=py37_1
- websocket-client=0.56.0=py37_0
- werkzeug=0.14.1=py37_0
- wheel=0.33.1=py37_0
- wrapt=1.11.1=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- yaml=0.1.7=had09818_2
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- argparse==1.4.0
- databricks-cli==0.9.1
- deprecated==1.2.7
- docker==4.1.0
- fusepy==2.0.4
- gorilla==0.3.0
- horovod==0.18.2
- hyperopt==0.2.1.db1
- keras==2.2.5
- matplotlib==3.0.3
- mleap==0.8.1
- mlflow==1.4.0
- nose-exclude==0.5.0
- pyarrow==0.13.0
- querystring-parser==1.2.4
- seaborn==0.9.0
- tensorboardx==1.9
prefix: /databricks/conda/envs/databricks-ml
Python em clusters de GPU
name: databricks-ml-gpu
channels:
- Databricks
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _py-xgboost-mutex=1.0=gpu_0
- _tflow_select=2.1.0=gpu
- absl-py=0.8.1=py37_0
- asn1crypto=0.24.0=py37_0
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.7=py37h7b6447c_0
- blas=1.0=mkl
- boto=2.49.0=py37_0
- boto3=1.9.162=py_0
- botocore=1.12.163=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2019.1.23=0
- certifi=2019.3.9=py37_0
- cffi=1.12.2=py37h2e261b9_1
- chardet=3.0.4=py37_1003
- click=7.0=py_0
- cloudpickle=0.8.0=py37_0
- colorama=0.4.1=py_0
- configparser=3.7.4=py37_0
- cryptography=2.6.1=py37h1ba5d50_0
- cudatoolkit=10.0.130=0
- cudnn=7.6.4=cuda10.0_0
- cupti=10.0.130=0
- cycler=0.10.0=py37_0
- cython=0.29.6=py37he6710b0_0
- decorator=4.4.0=py37_1
- docutils=0.14=py37_0
- entrypoints=0.3=py37_0
- et_xmlfile=1.0.1=py37_0
- flask=1.0.2=py37_1
- freetype=2.9.1=h8a8886c_1
- future=0.17.1=py37_0
- gast=0.2.2=py37_0
- gitdb2=2.0.6=py_0
- gitpython=2.1.11=py37_0
- google-pasta=0.1.8=py_0
- grpcio=1.16.1=py37hf8bcb03_1
- gunicorn=19.9.0=py37_0
- h5py=2.9.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- html5lib=1.0.1=py_0
- icu=58.2=h9c2bf20_1
- idna=2.8=py37_0
- intel-openmp=2019.3=199
- ipython=7.4.0=py37h39e3cac_0
- ipython_genutils=0.2.0=py37_0
- itsdangerous=1.1.0=py_0
- jdcal=1.4=py37_0
- jedi=0.13.3=py37_0
- jinja2=2.10=py37_0
- jmespath=0.9.4=py_0
- jpeg=9b=h024ee3a_2
- keras-applications=1.0.8=py_0
- keras-preprocessing=1.1.0=py_1
- kiwisolver=1.0.1=py37hf484d3e_0
- krb5=1.16.1=h173b8e3_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=8.2.0=hdf63c60_1
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.36=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.9.2=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=8.2.0=hdf63c60_1
- libtiff=4.0.10=h2733197_2
- libxgboost=0.90=h688424c_0
- libxml2=2.9.9=hea5a465_1
- libxslt=1.1.33=h7d1a2b0_0
- llvmlite=0.28.0=py37hd408876_0
- lxml=4.3.2=py37hefd8a0e_0
- mako=1.0.10=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- mkl=2019.3=199
- mkl_fft=1.0.10=py37ha843d7b_0
- mkl_random=1.0.2=py37hd81dba3_0
- ncurses=6.1=he6710b0_1
- networkx=2.2=py37_1
- ninja=1.9.0=py37hfd86e86_0
- nose=1.3.7=py37_2
- numba=0.43.1=py37h962f231_0
- numpy=1.16.2=py37h7e9f1db_0
- numpy-base=1.16.2=py37hde5b4d6_0
- olefile=0.46=py_0
- openpyxl=2.6.1=py37_1
- openssl=1.1.1b=h7b6447c_1
- opt_einsum=3.1.0=py_0
- pandas=0.24.2=py37he6710b0_0
- paramiko=2.4.2=py37_0
- parso=0.3.4=py37_0
- pathlib2=2.3.3=py37_0
- patsy=0.5.1=py37_0
- pexpect=4.6.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=5.4.1=py37h34e0f95_0
- pip=19.0.3=py37_0
- ply=3.11=py37_0
- prompt_toolkit=2.0.9=py37_0
- protobuf=3.9.2=py37he6710b0_0
- psutil=5.6.1=py37h7b6447c_0
- psycopg2=2.7.6.1=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- py-xgboost=0.90=py37h688424c_0
- py-xgboost-gpu=0.90=py37h28bbb66_0
- pyasn1=0.4.8=py_0
- pycparser=2.19=py_0
- pygments=2.3.1=py37_0
- pymongo=3.8.0=py37he6710b0_1
- pynacl=1.3.0=py37h7b6447c_0
- pyopenssl=19.0.0=py37_0
- pyparsing=2.3.1=py37_0
- pysocks=1.6.8=py37_0
- python=3.7.3=h0371630_0
- python-dateutil=2.8.0=py37_0
- python-editor=1.0.4=py_0
- pytorch=1.3.0=py3.7_cuda10.0.130_cudnn7.6.3_0
- pytz=2018.9=py37_0
- pyyaml=5.1=py37h7b6447c_0
- readline=7.0=h7b6447c_5
- requests=2.21.0=py37_0
- s3transfer=0.2.1=py37_0
- scikit-learn=0.20.3=py37hd81dba3_0
- scipy=1.2.1=py37h7c811a0_0
- setuptools=40.8.0=py37_0
- simplejson=3.16.0=py37h14c3975_0
- singledispatch=3.4.0.3=py37_0
- six=1.12.0=py37_0
- smmap2=2.0.5=py_0
- sqlite=3.27.2=h7b6447c_0
- sqlparse=0.3.0=py_0
- statsmodels=0.9.0=py37h035aef0_0
- tabulate=0.8.3=py37_0
- tensorboard=1.15.0+db2=pyhb230dea_0
- tensorflow=1.15.0+db2=gpu_py37h9fd0ff8_0
- tensorflow-base=1.15.0+db2=gpu_py37hd56f5dd_0
- tensorflow-estimator=1.15.1+db2=pyh2649769_0
- tensorflow-gpu=1.15.0+db2=h0d30ee6_0
- termcolor=1.1.0=py37_1
- tk=8.6.8=hbc83047_0
- torchvision=0.4.1=py37_cu100
- tqdm=4.31.1=py37_1
- traitlets=4.3.2=py37_0
- urllib3=1.24.1=py37_0
- virtualenv=16.0.0=py37_0
- wcwidth=0.1.7=py37_0
- webencodings=0.5.1=py37_1
- websocket-client=0.56.0=py37_0
- werkzeug=0.14.1=py37_0
- wheel=0.33.1=py37_0
- wrapt=1.11.1=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- yaml=0.1.7=had09818_2
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- argparse==1.4.0
- databricks-cli==0.9.1
- deprecated==1.2.7
- docker==4.1.0
- fusepy==2.0.4
- gorilla==0.3.0
- horovod==0.18.2
- hyperopt==0.2.1.db1
- keras==2.2.5
- matplotlib==3.0.3
- mleap==0.8.1
- mlflow==1.4.0
- nose-exclude==0.5.0
- pyarrow==0.13.0
- querystring-parser==1.2.4
- seaborn==0.9.0
- tensorboardx==1.9
prefix: /databricks/conda/envs/databricks-ml-gpu
Pacotes Spark contendo módulos Python
Pacote Spark | Módulo Python | Versão |
---|---|---|
quadros gráficos | quadros gráficos | 0.7.0-db1-faísca2.4 |
faísca-aprendizagem profunda | Faísca | 1.5.0-db12-faísca2.4 |
tensorframes | tensorframes | 0.8.2-s_2.11 |
Bibliotecas R
As bibliotecas R são idênticas às bibliotecas R no Databricks Runtime 6.2.
Bibliotecas Java e Scala (cluster Scala 2.11)
Além das bibliotecas Java e Scala no Databricks Runtime 6.2, o Databricks Runtime 6.2 ML contém os seguintes JARs:
ID do Grupo | ID do Artefacto | Versão |
---|---|---|
com.databricks | faísca-aprendizagem profunda | 1.5.0-db12-faísca2.4 |
com.typesafe.akka | AKKA-actor_2,11 | 2.3.11 |
ml.combust.mleap | mleap-databricks-runtime_2.11 | 0.15.0 |
ml.dmlc | xgboost4j | 0.90 |
ml.dmlc | xgboost4j-faísca | 0.90 |
org.graphframes | graphframes_2.11 | 0.7.0-db1-faísca2.4 |
org.mlflow | mlflow-cliente | 1.4.0 |
org.tensorflow | libtensorflow | 1.15.0 |
org.tensorflow | libtensorflow_jni | 1.15.0 |
org.tensorflow | spark-tensorflow-connector_2.11 | 1.15.0 |
org.tensorflow | TensorFlow | 1.15.0 |
org.tensorframes | tensorframes | 0.8.2-s_2.11 |