Gravar mensagens de evento no Azure Data Lake Storage Gen2 com a API Apache Flink® DataStream
Nota
Vamos desativar o Azure HDInsight no AKS em 31 de janeiro de 2025. Antes de 31 de janeiro de 2025, você precisará migrar suas cargas de trabalho para o Microsoft Fabric ou um produto equivalente do Azure para evitar o encerramento abrupto de suas cargas de trabalho. Os clusters restantes na sua subscrição serão interrompidos e removidos do anfitrião.
Apenas o apoio básico estará disponível até à data da reforma.
Importante
Esta funcionalidade está atualmente em pré-visualização. Os Termos de Utilização Suplementares para Pré-visualizações do Microsoft Azure incluem mais termos legais que se aplicam a funcionalidades do Azure que estão em versão beta, em pré-visualização ou ainda não disponibilizadas para disponibilidade geral. Para obter informações sobre essa visualização específica, consulte Informações de visualização do Azure HDInsight no AKS. Para perguntas ou sugestões de recursos, envie uma solicitação no AskHDInsight com os detalhes e siga-nos para obter mais atualizações na Comunidade do Azure HDInsight.
O Apache Flink usa sistemas de arquivos para consumir e armazenar dados persistentemente, tanto para os resultados de aplicativos quanto para tolerância a falhas e recuperação. Neste artigo, saiba como gravar mensagens de evento no Azure Data Lake Storage Gen2 com a API DataStream.
Pré-requisitos
- Cluster Apache Flink no HDInsight no AKS
- Cluster Apache Kafka no HDInsight
- É necessário garantir que as configurações de rede sejam atendidas, conforme descrito em Usando o Apache Kafka no HDInsight. Verifique se o HDInsight nos clusters AKS e HDInsight está na mesma Rede Virtual.
- Use o MSI para acessar o ADLS Gen2
- IntelliJ para desenvolvimento em uma VM do Azure no HDInsight na Rede Virtual AKS
Conector Apache Flink FileSystem
Este conector de sistema de arquivos fornece as mesmas garantias para BATCH e STREAMING e foi projetado para fornecer semântica exatamente uma vez para execução de STREAMING. Para obter mais informações, consulte Flink DataStream Filesystem.
Conector Apache Kafka
Flink fornece um conector Apache Kafka para ler dados e gravar dados em tópicos Kafka com garantias exatamente uma vez. Para obter mais informações, consulte Apache Kafka Connector.
Crie o projeto para o Apache Flink
pom.xml sobre o IntelliJ IDEA
<properties>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<flink.version>1.17.0</flink.version>
<java.version>1.8</java.version>
<scala.binary.version>2.12</scala.binary.version>
<kafka.version>3.2.0</kafka.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-java -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-files -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-files</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka</artifactId>
<version>${flink.version}</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.0.0</version>
<configuration>
<appendAssemblyId>false</appendAssemblyId>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
Programas para Lavatório ADLS Gen2
abfsGen2.java
Nota
Substitua o Apache Kafka no cluster HDInsight bootStrapServers por seus próprios corretores para o Kafka 3.2
package contoso.example;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.serialization.SimpleStringEncoder;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.configuration.MemorySize;
import org.apache.flink.connector.file.sink.FileSink;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.filesystem.rollingpolicies.DefaultRollingPolicy;
import java.time.Duration;
public class KafkaSinkToGen2 {
public static void main(String[] args) throws Exception {
// 1. get stream execution env
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
Configuration flinkConfig = new Configuration();
flinkConfig.setString("classloader.resolve-order", "parent-first");
env.getConfig().setGlobalJobParameters(flinkConfig);
// 2. read kafka message as stream input, update your broker ip's
String brokers = "<update-broker-ip>:9092,<update-broker-ip>:9092,<update-broker-ip>:9092";
KafkaSource<String> source = KafkaSource.<String>builder()
.setBootstrapServers(brokers)
.setTopics("click_events")
.setGroupId("my-group")
.setStartingOffsets(OffsetsInitializer.earliest())
.setValueOnlyDeserializer(new SimpleStringSchema())
.build();
DataStream<String> stream = env.fromSource(source, WatermarkStrategy.noWatermarks(), "Kafka Source");
stream.print();
// 3. sink to gen2, update container name and storage path
String outputPath = "abfs://<container-name>@<storage-path>.dfs.core.windows.net/flink/data/click_events";
final FileSink<String> sink = FileSink
.forRowFormat(new Path(outputPath), new SimpleStringEncoder<String>("UTF-8"))
.withRollingPolicy(
DefaultRollingPolicy.builder()
.withRolloverInterval(Duration.ofMinutes(2))
.withInactivityInterval(Duration.ofMinutes(3))
.withMaxPartSize(MemorySize.ofMebiBytes(5))
.build())
.build();
stream.sinkTo(sink);
// 4. run stream
env.execute("Kafka Sink To Gen2");
}
}
Empacote jar e envie para o Apache Flink.
Carregue o frasco para a ABFS.
Passe as informações do jar de trabalho na
AppMode
criação do cluster.Nota
Certifique-se de adicionar classloader.resolve-order como 'parent-first' e hadoop.classpath.enable como
true
Selecione Agregação de log de trabalho para enviar logs de trabalho para a conta de armazenamento.
Você pode ver o trabalho em execução.
Validar dados de streaming no ADLS Gen2
Estamos vendo o streaming para o click_events
ADLS Gen2.
Você pode especificar uma política de interrupção contínua que rola o arquivo de peça em andamento em qualquer uma das três condições a seguir:
.withRollingPolicy(
DefaultRollingPolicy.builder()
.withRolloverInterval(Duration.ofMinutes(5))
.withInactivityInterval(Duration.ofMinutes(3))
.withMaxPartSize(MemorySize.ofMebiBytes(5))
.build())
Referência
- Conector Apache Kafka
- Sistema de arquivos Flink DataStream
- Site do Apache Flink
- Apache, Apache Kafka, Kafka, Apache Flink, Flink e nomes de projetos de código aberto associados são marcas comerciais da Apache Software Foundation (ASF).