Partilhar via


Etapa 4 - Explore o código de pesquisa do .NET

Nas lições anteriores, você adicionou a pesquisa a um aplicativo Web estático. Esta lição destaca os passos essenciais que estabelecem a integração. Se você está procurando um cheat sheet sobre como integrar a pesquisa em seu aplicativo Web, este artigo explica o que você precisa saber.

Azure SDK Azure.Search.Documents

O aplicativo Function usa o SDK do Azure para Azure AI Search:

O aplicativo de função é autenticado por meio do SDK na API de Pesquisa do Azure AI baseada em nuvem usando seu nome de recurso, chave de recurso e nome de índice. Os segredos são armazenados nas configurações estáticas do aplicativo Web e puxados para a função como variáveis de ambiente.

Configurar segredos em um arquivo local.settings.json

{
  "IsEncrypted": false,
  "Values": {
    "AzureWebJobsStorage": "",
    "FUNCTIONS_WORKER_RUNTIME": "dotnet-isolated",
    "SearchApiKey": "",
    "SearchServiceName": "",
    "SearchIndexName": "good-books"
  },
  "Host": {
    "CORS": "*"
  }
}

Função do Azure: Pesquisar o catálogo

A API de Pesquisa usa um termo de pesquisa e pesquisa os documentos no índice de pesquisa, retornando uma lista de correspondências.

A função do Azure obtém as informações de configuração de pesquisa e preenche a consulta.

using Azure;
using Azure.Core.Serialization;
using Azure.Search.Documents;
using Azure.Search.Documents.Models;
using Microsoft.Azure.Functions.Worker;
using Microsoft.Azure.Functions.Worker.Http;
using Microsoft.Extensions.Logging;
using System.Net;
using System.Text.Json;
using System.Text.Json.Serialization;
using WebSearch.Models;
using SearchFilter = WebSearch.Models.SearchFilter;

namespace WebSearch.Function
{
    public class Search
    {
        private static string searchApiKey = Environment.GetEnvironmentVariable("SearchApiKey", EnvironmentVariableTarget.Process);
        private static string searchServiceName = Environment.GetEnvironmentVariable("SearchServiceName", EnvironmentVariableTarget.Process);
        private static string searchIndexName = Environment.GetEnvironmentVariable("SearchIndexName", EnvironmentVariableTarget.Process) ?? "good-books";

        private readonly ILogger<Lookup> _logger;

        public Search(ILogger<Lookup> logger)
        {
            _logger = logger;
        }

        [Function("search")]
        public async Task<HttpResponseData> RunAsync(
            [HttpTrigger(AuthorizationLevel.Anonymous, "post")] HttpRequestData req, 
            FunctionContext executionContext)
        {
            string requestBody = await new StreamReader(req.Body).ReadToEndAsync();
            var data = JsonSerializer.Deserialize<RequestBodySearch>(requestBody);

            // Azure AI Search 
            Uri serviceEndpoint = new($"https://{searchServiceName}.search.windows.net/");

            SearchClient searchClient = new(
                serviceEndpoint,
                searchIndexName,
                new AzureKeyCredential(searchApiKey)
            );

            SearchOptions options = new()

            {
                Size = data.Size,
                Skip = data.Skip,
                IncludeTotalCount = true,
                Filter = CreateFilterExpression(data.Filters)
            };
            options.Facets.Add("authors");
            options.Facets.Add("language_code");

            SearchResults<SearchDocument> searchResults = searchClient.Search<SearchDocument>(data.SearchText, options);

            var facetOutput = new Dictionary<string, IList<FacetValue>>();
            foreach (var facetResult in searchResults.Facets)
            {
                facetOutput[facetResult.Key] = facetResult.Value
                           .Select(x => new FacetValue { value = x.Value.ToString(), count = x.Count })

                           .ToList();
            }

            // Data to return 
            var output = new SearchOutput
            {
                Count = searchResults.TotalCount,
                Results = searchResults.GetResults().ToList(),
                Facets = facetOutput
            };
            
            var response = req.CreateResponse(HttpStatusCode.Found);

            // Serialize data
            var serializer = new JsonObjectSerializer(
                new JsonSerializerOptions(JsonSerializerDefaults.Web));
            await response.WriteAsJsonAsync(output, serializer);

            return response;
        }

        public static string CreateFilterExpression(List<SearchFilter> filters)
        {
            if (filters is null or { Count: <= 0 })
            {
                return null;
            }

            List<string> filterExpressions = new();


            List<SearchFilter> authorFilters = filters.Where(f => f.field == "authors").ToList();
            List<SearchFilter> languageFilters = filters.Where(f => f.field == "language_code").ToList();

            List<string> authorFilterValues = authorFilters.Select(f => f.value).ToList();

            if (authorFilterValues.Count > 0)
            {
                string filterStr = string.Join(",", authorFilterValues);
                filterExpressions.Add($"{"authors"}/any(t: search.in(t, '{filterStr}', ','))");
            }

            List<string> languageFilterValues = languageFilters.Select(f => f.value).ToList();
            foreach (var value in languageFilterValues)
            {
                filterExpressions.Add($"language_code eq '{value}'");
            }

            return string.Join(" and ", filterExpressions);
        }
    }
}

Cliente: Pesquisa a partir do catálogo

Chame a Função do Azure no cliente React com o código a seguir.

import React, { useEffect, useState } from 'react';
import axios from 'axios';
import CircularProgress  from '@mui/material/CircularProgress';
import { useLocation, useNavigate } from "react-router-dom";

import Results from '../../components/Results/Results';
import Pager from '../../components/Pager/Pager';
import Facets from '../../components/Facets/Facets';
import SearchBar from '../../components/SearchBar/SearchBar';

import "./Search.css";

export default function Search() {
  
  let location = useLocation();
  const navigate = useNavigate();
  
  const [ results, setResults ] = useState([]);
  const [ resultCount, setResultCount ] = useState(0);
  const [ currentPage, setCurrentPage ] = useState(1);
  const [ q, setQ ] = useState(new URLSearchParams(location.search).get('q') ?? "*");
  const [ top ] = useState(new URLSearchParams(location.search).get('top') ?? 8);
  const [ skip, setSkip ] = useState(new URLSearchParams(location.search).get('skip') ?? 0);
  const [ filters, setFilters ] = useState([]);
  const [ facets, setFacets ] = useState({});
  const [ isLoading, setIsLoading ] = useState(true);

  let resultsPerPage = top;
  
  useEffect(() => {
    setIsLoading(true);
    setSkip((currentPage-1) * top);
    const body = {
      q: q,
      top: top,
      skip: skip,
      filters: filters
    };

    axios.post( '/api/search', body)
      .then(response => {
            console.log(JSON.stringify(response.data))
            setResults(response.data.results);
            setFacets(response.data.facets);
            setResultCount(response.data.count);
            setIsLoading(false);
        } )
        .catch(error => {
            console.log(error);
            setIsLoading(false);
        });
    
  }, [q, top, skip, filters, currentPage]);

  // pushing the new search term to history when q is updated
  // allows the back button to work as expected when coming back from the details page
  useEffect(() => {
    navigate('/search?q=' + q);  
    setCurrentPage(1);
    setFilters([]);
    // eslint-disable-next-line react-hooks/exhaustive-deps
  }, [q]);


  let postSearchHandler = (searchTerm) => {
    //console.log(searchTerm);
    setQ(searchTerm);
  }

  var body;
  if (isLoading) {
    body = (
      <div className="col-md-9">
        <CircularProgress />
      </div>);
  } else {
    body = (
      <div className="col-md-9">
        <Results documents={results} top={top} skip={skip} count={resultCount}></Results>
        <Pager className="pager-style" currentPage={currentPage} resultCount={resultCount} resultsPerPage={resultsPerPage} setCurrentPage={setCurrentPage}></Pager>
      </div>
    )
  }

  return (
    <main className="main main--search container-fluid">
      
      <div className="row">
        <div className="col-md-3">
          <div className="search-bar">
            <SearchBar postSearchHandler={postSearchHandler} q={q}></SearchBar>
          </div>
          <Facets facets={facets} filters={filters} setFilters={setFilters}></Facets>
        </div>
        {body}
      </div>
    </main>
  );
}

Azure Function: Sugestões do catálogo

A API Sugerir usa um termo de pesquisa enquanto um usuário digita e sugere termos de pesquisa, como títulos de livros e autores, nos documentos do índice de pesquisa, retornando uma pequena lista de correspondências.

O sugeridor de pesquisa, sg, é definido no arquivo de esquema usado durante o carregamento em massa.

using Azure;
using Azure.Core.Serialization;
using Azure.Search.Documents;
using Azure.Search.Documents.Models;
using Microsoft.Azure.Functions.Worker;
using Microsoft.Azure.Functions.Worker.Http;
using Microsoft.Extensions.Logging;
using System.Net;
using System.Text.Json;
using WebSearch.Models;

namespace WebSearch.Function
{
    public class Suggest
    {
        private static string searchApiKey = Environment.GetEnvironmentVariable("SearchApiKey", EnvironmentVariableTarget.Process);
        private static string searchServiceName = Environment.GetEnvironmentVariable("SearchServiceName", EnvironmentVariableTarget.Process);
        private static string searchIndexName = Environment.GetEnvironmentVariable("SearchIndexName", EnvironmentVariableTarget.Process) ?? "good-books";

        private readonly ILogger<Lookup> _logger;

        public Suggest(ILogger<Lookup> logger)
        {
            _logger = logger;
        }

        [Function("suggest")]
        public async Task<HttpResponseData> RunAsync(
            [HttpTrigger(AuthorizationLevel.Anonymous, "post")] HttpRequestData req, 
            FunctionContext executionContext)
        {
            // Get Document Id
            string requestBody = await new StreamReader(req.Body).ReadToEndAsync();
            var data = JsonSerializer.Deserialize<RequestBodySuggest>(requestBody);

            // Azure AI Search 
            Uri serviceEndpoint = new($"https://{searchServiceName}.search.windows.net/");

            SearchClient searchClient = new(

                serviceEndpoint,
                searchIndexName,
                new AzureKeyCredential(searchApiKey)
            );

            SuggestOptions options = new()

            {
                Size = data.Size
            };

            var suggesterResponse = await searchClient.SuggestAsync<BookModel>(data.SearchText, data.SuggesterName, options);
            
            // Data to return
            var searchSuggestions = new Dictionary<string, List<SearchSuggestion<BookModel>>>
            {
                ["suggestions"] = suggesterResponse.Value.Results.ToList()
            };

            var response = req.CreateResponse(HttpStatusCode.Found);

            // Serialize data
            var serializer = new JsonObjectSerializer(
                new JsonSerializerOptions(JsonSerializerDefaults.Web));
            await response.WriteAsJsonAsync(searchSuggestions, serializer);
            
            return response;
        }
    }
}

Cliente: Sugestões do catálogo

A API da função Sugerir é chamada no aplicativo React em \client\src\components\SearchBar\SearchBar.js como parte da inicialização do componente:

import React, {useState, useEffect} from 'react';
import axios from 'axios';
import Suggestions from './Suggestions/Suggestions';

import "./SearchBar.css";

export default function SearchBar(props) {

    let [q, setQ] = useState("");
    let [suggestions, setSuggestions] = useState([]);
    let [showSuggestions, setShowSuggestions] = useState(false);

    const onSearchHandler = () => {
        props.postSearchHandler(q);
        setShowSuggestions(false);
    }

    const suggestionClickHandler = (s) => {
        document.getElementById("search-box").value = s;
        setShowSuggestions(false);
        props.postSearchHandler(s);    
    }

    const onEnterButton = (event) => {
        if (event.keyCode === 13) {
            onSearchHandler();
        }
    }

    const onChangeHandler = () => {
        var searchTerm = document.getElementById("search-box").value;
        setShowSuggestions(true);
        setQ(searchTerm);

        // use this prop if you want to make the search more reactive
        if (props.searchChangeHandler) {
            props.searchChangeHandler(searchTerm);
        }
    }

    useEffect(_ =>{
        const timer = setTimeout(() => {
            const body = {
                q: q,
                top: 5,
                suggester: 'sg'
            };

            if (q === '') {
                setSuggestions([]);
            } else {
                axios.post( '/api/suggest', body)
                .then(response => {
                    console.log(JSON.stringify(response.data))
                    setSuggestions(response.data.suggestions);
                } )
                .catch(error => {
                    console.log(error);
                    setSuggestions([]);
                });
            }
        }, 300);
        return () => clearTimeout(timer);
    }, [q, props]);

    var suggestionDiv;
    if (showSuggestions) {
        suggestionDiv = (<Suggestions suggestions={suggestions} suggestionClickHandler={(s) => suggestionClickHandler(s)}></Suggestions>);
    } else {
        suggestionDiv = (<div></div>);
    }

    return (
        <div >
            <div className="input-group" onKeyDown={e => onEnterButton(e)}>
                <div className="suggestions" >
                    <input 
                        autoComplete="off" // setting for browsers; not the app
                        type="text" 
                        id="search-box" 
                        className="form-control rounded-0" 
                        placeholder="What are you looking for?" 
                        onChange={onChangeHandler} 
                        defaultValue={props.q}
                        onBlur={() => setShowSuggestions(false)}
                        onClick={() => setShowSuggestions(true)}>
                    </input>
                    {suggestionDiv}
                </div>
                <div className="input-group-btn">
                    <button className="btn btn-primary rounded-0" type="submit" onClick={onSearchHandler}>
                        Search
                    </button>
                </div>
            </div>
        </div>
    );
};

Função do Azure: Obter documento específico

A API de Pesquisa de Documentos usa uma ID e retorna o objeto de documento do Índice de Pesquisa.

using Azure;
using Azure.Core.Serialization;
using Azure.Search.Documents;
using Azure.Search.Documents.Models;
using Microsoft.Azure.Functions.Worker;
using Microsoft.Azure.Functions.Worker.Http;
using Microsoft.Extensions.Logging;
using System.Net;
using System.Text.Json;
using WebSearch.Models;

namespace WebSearch.Function
{
    public class Lookup
    {
        private static string searchApiKey = Environment.GetEnvironmentVariable("SearchApiKey", EnvironmentVariableTarget.Process);
        private static string searchServiceName = Environment.GetEnvironmentVariable("SearchServiceName", EnvironmentVariableTarget.Process);
        private static string searchIndexName = Environment.GetEnvironmentVariable("SearchIndexName", EnvironmentVariableTarget.Process) ?? "good-books";

        private readonly ILogger<Lookup> _logger;

        public Lookup(ILogger<Lookup> logger)
        {
            _logger = logger;
        }


        [Function("lookup")]
        public async Task<HttpResponseData> RunAsync(
            [HttpTrigger(AuthorizationLevel.Anonymous, "get", "post")] HttpRequestData req, 
            FunctionContext executionContext)
        {

            // Get Document Id
            var query = System.Web.HttpUtility.ParseQueryString(req.Url.Query);
            string documentId = query["id"].ToString();

            // Azure AI Search 
            Uri serviceEndpoint = new($"https://{searchServiceName}.search.windows.net/");

            SearchClient searchClient = new(

                serviceEndpoint,
                searchIndexName,
                new AzureKeyCredential(searchApiKey)
            );

            var getDocumentResponse = await searchClient.GetDocumentAsync<SearchDocument>(documentId);

            // Data to return 
            var output = new LookupOutput
            {
                Document = getDocumentResponse.Value
            };

            var response = req.CreateResponse(HttpStatusCode.Found);
            response.Headers.Add("Content-Type", "application/json; charset=utf-8");

            // Serialize data
            var serializer = new JsonObjectSerializer(
                new JsonSerializerOptions(JsonSerializerDefaults.Web));
            await response.WriteAsJsonAsync(output, serializer);

            return response;
        }
    }
}

Cliente: Obter documento específico

Essa API de função é chamada no aplicativo React em \client\src\pages\Details\Detail.js como parte da inicialização do componente:

import React, { useState, useEffect } from "react";
import { useParams } from 'react-router-dom';
import Rating from '@mui/material/Rating';
import CircularProgress from '@mui/material/CircularProgress';
import axios from 'axios';

import "./Details.css";

export default function Details() {

  let { id } = useParams();
  const [document, setDocument] = useState({});
  const [selectedTab, setTab] = useState(0);
  const [isLoading, setIsLoading] = useState(true);

  useEffect(() => {
    setIsLoading(true);
    // console.log(id);
    axios.get('/api/lookup?id=' + id)
      .then(response => {
        console.log(JSON.stringify(response.data))
        const doc = response.data.document;
        setDocument(doc);
        setIsLoading(false);
      })
      .catch(error => {
        console.log(error);
        setIsLoading(false);
      });

  }, [id]);

  // View default is loading with no active tab
  let detailsBody = (<CircularProgress />),
      resultStyle = "nav-link",
      rawStyle    = "nav-link";

  if (!isLoading && document) {
    // View result
    if (selectedTab === 0) {
      resultStyle += " active";
      detailsBody = (
        <div className="card-body">
          <h5 className="card-title">{document.original_title}</h5>
          <img className="image" src={document.image_url} alt="Book cover"></img>
          <p className="card-text">{document.authors?.join('; ')} - {document.original_publication_year}</p>
          <p className="card-text">ISBN {document.isbn}</p>
          <Rating name="half-rating-read" value={parseInt(document.average_rating)} precision={0.1} readOnly></Rating>
          <p className="card-text">{document.ratings_count} Ratings</p>
        </div>
      );
    }

    // View raw data
    else {
      rawStyle += " active";
      detailsBody = (
        <div className="card-body text-left">
          <pre><code>
            {JSON.stringify(document, null, 2)}
          </code></pre>
        </div>
      );
    }
  }

  return (
    <main className="main main--details container fluid">
      <div className="card text-center result-container">
        <div className="card-header">
          <ul className="nav nav-tabs card-header-tabs">
              <li className="nav-item"><button className={resultStyle} onClick={() => setTab(0)}>Result</button></li>
              <li className="nav-item"><button className={rawStyle} onClick={() => setTab(1)}>Raw Data</button></li>
          </ul>
        </div>
        {detailsBody}
      </div>
    </main>
  );
}

Modelos C# para suportar o aplicativo de função

Os modelos a seguir são usados para suportar as funções neste aplicativo.

using Azure.Search.Documents.Models;
using System.Text.Json.Serialization;

namespace WebSearch.Models
{
    public class RequestBodyLookUp
    {
        [JsonPropertyName("id")]
        public string Id { get; set; }
    }

    public class RequestBodySuggest
    {
        [JsonPropertyName("q")]
        public string SearchText { get; set; }

        [JsonPropertyName("top")]
        public int Size { get; set; }

        [JsonPropertyName("suggester")]
        public string SuggesterName { get; set; }
    }

    public class RequestBodySearch
    {
        [JsonPropertyName("q")]
        public string SearchText { get; set; }

        [JsonPropertyName("skip")]
        public int Skip { get; set; }

        [JsonPropertyName("top")]
        public int Size { get; set; }

        [JsonPropertyName("filters")]
        public List<SearchFilter> Filters { get; set; }
    }

    public class SearchFilter
    {
        public string field { get; set; }
        public string value { get; set; }
    }

    public class FacetValue
    {
        public string value { get; set; }
        public long? count { get; set; }
    }

    class SearchOutput
    {
        [JsonPropertyName("count")]
        public long? Count { get; set; }
        [JsonPropertyName("results")]
        public List<SearchResult<SearchDocument>> Results { get; set; }
        [JsonPropertyName("facets")]
        public Dictionary<String, IList<FacetValue>> Facets { get; set; }
    }
    class LookupOutput
    {
        [JsonPropertyName("document")]
        public SearchDocument Document { get; set; }
    }
    public class BookModel
    {
        public string id { get; set; }
        public decimal? goodreads_book_id { get; set; }
        public decimal? best_book_id { get; set; }
        public decimal? work_id { get; set; }
        public decimal? books_count { get; set; }
        public string isbn { get; set; }
        public string isbn13 { get; set; }
        public string[] authors { get; set; }
        public decimal? original_publication_year { get; set; }
        public string original_title { get; set; }
        public string title { get; set; }
        public string language_code { get; set; }
        public double? average_rating { get; set; }
        public decimal? ratings_count { get; set; }
        public decimal? work_ratings_count { get; set; }
        public decimal? work_text_reviews_count { get; set; }
        public decimal? ratings_1 { get; set; }
        public decimal? ratings_2 { get; set; }
        public decimal? ratings_3 { get; set; }
        public decimal? ratings_4 { get; set; }
        public decimal? ratings_5 { get; set; }
        public string image_url { get; set; }
        public string small_image_url { get; set; }
    }
}

Próximos passos

Para continuar aprendendo mais sobre o desenvolvimento do Azure AI Search, tente este próximo tutorial sobre indexação: