Partilhar via


SdcaMaximumEntropyMulticlassTrainer Classe

Definição

O IEstimator<TTransformer> para prever um destino usando um classificador multiclasse de entropia máxima. O modelo MaximumEntropyModelParameters treinado produz probabilidades de classes.

public sealed class SdcaMaximumEntropyMulticlassTrainer : Microsoft.ML.Trainers.SdcaMulticlassTrainerBase<Microsoft.ML.Trainers.MaximumEntropyModelParameters>
type SdcaMaximumEntropyMulticlassTrainer = class
    inherit SdcaMulticlassTrainerBase<MaximumEntropyModelParameters>
Public NotInheritable Class SdcaMaximumEntropyMulticlassTrainer
Inherits SdcaMulticlassTrainerBase(Of MaximumEntropyModelParameters)
Herança

Comentários

Para criar esse treinador, use SdcaMaximumEntropy ou SdcaMaximumEntropy(Options).

Colunas de entrada e saída

Os dados da coluna do rótulo de entrada devem ser do tipo chave e a coluna de recurso deve ser um vetor de tamanho conhecido de Single.

Este treinador gera as seguintes colunas:

Nome da Coluna de Saída Tipo de coluna Descrição
Score Vetor de Single As pontuações de todas as classes. Um valor mais alto significa maior probabilidade de se enquadrar na classe associada. Se o elemento iº elemento tiver o maior valor, o índice de rótulo previsto será i. Observe que i é o índice baseado em zero.
PredictedLabel tipo de chave O índice do rótulo previsto. Se seu valor for i, o rótulo real será a iº categoria no tipo de rótulo de entrada com valor de chave.

Características do Treinador

Ferramenta de machine learning Classificação multiclasse
A normalização é necessária? Sim
O cache é necessário? No
NuGet necessário além de Microsoft.ML Nenhum
Exportável para ONNX Sim

Função Pontuação

Isso treina um modelo linear para resolver problemas de classificação de várias classes. Suponha que o número de classes seja $m$ e o número de recursos seja $n$. Ele atribui à classe $c$-th um vetor coeficiente $\textbf{w}_c \in {\mathbb R}^n$ e um viés $b_c \in {\mathbb R}$, para $c=1,\dots,m$. Dado um vetor de recurso $\textbf{x} \in {\mathbb R}^n$, a pontuação da classe $c$-th seria $\tilde{P}(c | \textbf{x}) = \frac{ e^{\hat{y}^c} }{ \sum_{c' = 1}^m e^{\hat{y}^{c'}} }$, onde $\hat{y}^c = \textbf{w}_c^T \textbf{x} + b_c$. Observe que $\tilde{P}(c | \textbf{x})$ é a probabilidade de observar a classe $c$ quando o vetor do recurso é $\textbf{x}$.

Detalhes do algoritmo de treinamento

Consulte a documentação do SdcaMulticlassTrainerBase.

Verifique a seção Consulte Também para obter links para exemplos de uso.

Campos

FeatureColumn

A coluna de recursos que o treinador espera.

(Herdado de TrainerEstimatorBase<TTransformer,TModel>)
LabelColumn

A coluna de rótulo que o treinador espera. Pode ser null, o que indica que o rótulo não é usado para treinamento.

(Herdado de TrainerEstimatorBase<TTransformer,TModel>)
WeightColumn

A coluna de peso que o treinador espera. Pode ser null, o que indica que o peso não é usado para treinamento.

(Herdado de TrainerEstimatorBase<TTransformer,TModel>)

Propriedades

Info

O IEstimator<TTransformer> para prever um destino usando um classificador multiclasse de entropia máxima. O modelo MaximumEntropyModelParameters treinado produz probabilidades de classes.

(Herdado de StochasticTrainerBase<TTransformer,TModel>)

Métodos

Fit(IDataView)

Treina e retorna um ITransformer.

(Herdado de TrainerEstimatorBase<TTransformer,TModel>)
GetOutputSchema(SchemaShape)

O IEstimator<TTransformer> para prever um destino usando um classificador multiclasse de entropia máxima. O modelo MaximumEntropyModelParameters treinado produz probabilidades de classes.

(Herdado de TrainerEstimatorBase<TTransformer,TModel>)

Métodos de Extensão

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Acrescente um "ponto de verificação de cache" à cadeia de estimativas. Isso garantirá que os estimadores downstream serão treinados em relação aos dados armazenados em cache. É útil ter um ponto de verificação de cache antes dos treinadores que fazem várias passagens de dados.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Dado um estimador, retorne um objeto de encapsulamento que chamará um delegado uma vez Fit(IDataView) chamado. Geralmente, é importante que um estimador retorne informações sobre o que estava em forma, e é por isso que o Fit(IDataView) método retorna um objeto especificamente tipado, em vez de apenas um geral ITransformer. No entanto, ao mesmo tempo, IEstimator<TTransformer> muitas vezes são formados em pipelines com muitos objetos, portanto, talvez seja necessário construir uma cadeia de estimadores por meio EstimatorChain<TLastTransformer> de onde o estimador para o qual queremos que o transformador seja enterrado em algum lugar nesta cadeia. Para esse cenário, podemos por meio desse método anexar um delegado que será chamado quando fit for chamado.

Aplica-se a

Confira também