Databricks Runtime 16.0 для Машинное обучение
Databricks Runtime 16.0 для Машинное обучение предоставляет готовую среду для машинного обучения и обработки и анализа данных на основе Databricks Runtime 16.0. Databricks Runtime ML содержит множество популярных библиотек машинного обучения, включая TensorFlow, PyTorch и XGBoost. Databricks Runtime ML включает AutoML – средство для автоматического обучения конвейеров машинного обучения. Databricks Runtime ML также поддерживает распределенное обучение глубокого обучения с помощью TorchDistributor, DeepSpeed и Ray.
Совет
Сведения о выпуске заметок о выпуске Databricks Runtime, которые достигли окончания поддержки (EoS), см . в заметках о выпуске Databricks Runtime. Версии среды выполнения EoS Databricks устарели и могут не обновляться.
Новые функции и внесенные улучшения
Databricks Runtime 16.0 ML построен на основе Databricks Runtime 16.0. Сведения о новых возможностях Databricks Runtime 16.0, включая Apache Spark MLlib и SparkR, см . в заметках о выпуске Databricks Runtime 16.0 .
Новые пакеты Python
В машинное обучение среды выполнения Databricks добавлены следующие пакеты Python:
- composer 0.24.1
- optuna 3.6.1
Примеры примеров AutoML для прогнозирования
AutoML теперь поддерживает примеры весов для прогнозирования, позволяя настраивать важность каждого временных рядов для обучения моделей прогнозирования нескольких временных рядов. Дополнительные сведения см. в parameters прогнозирования для AutoML Python API.
Используйте представление в Unity Catalog как функцию table
Теперь вы можете использовать представление в Unity Catalog в качестве функции table. См. статью Использование существующего представления в Unity Catalog в качестве функции table.
Другие изменения
Horovod, HorovodRunner, Petastorm, spark-tensorflow-distributor
удален
Следующие пакеты, включенные в предыдущие версии Databricks Runtime ML, не включены в Databricks Runtime 16.0 ML:
- Horovod
- HorovodRunner
- Petastorm
spark-tensorflow-distributor
Databricks рекомендует следующие замены:
- Для распределенного глубокого обучения Databricks рекомендует использовать TorchDistributor для распределенного обучения с PyTorch или
tf.distribute.Strategy
API для распределенного обучения с TensorFlow. - Для загрузки больших наборов данных из облачного хранилища Databricks рекомендуется использовать потоковую передачу мозаики.
- Для распределенного обучения для модели TensorFlow или Keras Databricks рекомендует использовать Ray. См . документацию по Ray в Databricks и документации по Ray.
Системная среда
Системная среда в Databricks Runtime 16.0 ML отличается от Databricks Runtime 16.0 следующим образом:
- Для кластеров GPU машинное обучение Databricks Runtime включает следующие библиотеки GPU NVIDIA:
- CUDA 12.6
- cublas 12.6.0.22-1
- cusolver 11.6.4.38-1
- cupti 12.6.37-1
- cusparse 12.5.2.23-1
- cuDNN 9.3.0.75-1
- NCCL 2.22.3
- TensorRT 10.2.0.19-1
Библиотеки
В следующих разделах list показаны библиотеки, включенные в Databricks Runtime 16.0 ML, которые отличаются от библиотек, включенных в Databricks Runtime 16.0.
В этом разделе рассматриваются следующие вопросы.
- Библиотеки верхнего уровня
- Библиотеки Python
- Библиотеки R
- Библиотеки Java и Scala (кластер Scala 2.12)
Библиотеки верхнего уровня
Databricks Runtime 16.0 ML включает следующие библиотеки верхнего уровня:
- datasets
- GraphFrames
- MLflow
- PyTorch
- spark-tensorflow-connector
- Scikit-learn
- течение
- TensorFlow
- TensorBoard
- Трансформаторы
Библиотеки Python
Databricks Runtime 16.0 ML используется virtualenv
для управления пакетами Python и включает множество популярных пакетов машинного обучения.
Помимо пакетов, указанных в следующих разделах, Databricks Runtime 16.0 ML также включает следующие пакеты:
- Hyperopt 0.2.7+db5
- automl 1.29.0
Чтобы воспроизвести среду Python среды выполнения Databricks в локальной виртуальной среде Python, скачайте файл requirements-16.0.txt и запустите pip install -r requirements-16.0.txt
его. Эта команда устанавливает все библиотеки открытый код, которые использует Databricks Runtime ML, но не устанавливает библиотеки, разработанные Databricks, например databricks-automl
databricks-feature-engineering
, или вилку hyperopt
Databricks.
Библиотеки Python в кластерах CPU
Библиотека | Версия | Библиотека | Версия | Библиотека | Версия |
---|---|---|---|---|---|
absl-py | 1.0.0 | accelerate | 0.33.0 | aiohttp | 3.9.5 |
aiohttp-cors | 0.7.0 | aiosignal | 1.2.0 | перегонный куб | 1.13.3 |
аннотированные типы | 0.7.0 | anyio | 4.2.0 | argcomplete | 3.5.0 |
argon2-cffi | 21.3.0 | argon2-cffi-bindings | 21.2.0 | Стрелка | 1.2.3 |
astor | 0.8.1 | asttokens | 2.0.5 | astunparse | 1.6.3 |
async-lru | 2.0.4 | attrs | 23.1.0 | аудиопоток | 3.0.1 |
autocommand | 2.2.2 | azure-core | 1.31.0 | azure-cosmos | 4.3.1 |
azure-identity | 1.18.0 | azure-storage-blob | 12.23.1 | azure-storage-file-datalake | 12.17.0 |
Babel | 2.11.0 | backoff | 2.2.1 | backports.tarfile | 1.2.0 |
bcrypt | 3.2.0 | beautifulsoup4 | 4.12.3 | black | 24.4.2 |
bleach | 4.1.0 | blinker | 1.7.0 | blis | 0.7.11 |
boto3 | 1.34.69 | botocore | 1.34.69 | Brotli | 1.0.9 |
cachetools | 5.3.3 | catalogue | 2.0.10 | кодировщики категорий | 2.6.3 |
certifi | 2024.6.2 | cffi | 1.16.0 | chardet | 4.0.0 |
charset-normalizer | 2.0.4 | авторазрыв | 2.0.0 | щелчок | 8.1.7 |
cloudpathlib | 0.19.0 | cloudpickle | 2.2.1 | cmdstanpy | 1.2.4 |
цветастые | 0.5.6 | colorlog | 6.8.2 | comm | 0.2.1 |
composer | 0.24.1 | сласти | 0.1.5 | configparser | 5.2.0 |
контурная диаграмма | 1.2.0 | coolname | 2.2.0 | криптография | 42.0.5 |
cycler | 0.11.0 | cymem | 2.0.8 | Cython | 3.0.11 |
дацит | 1.8.1 | databricks-automl-runtime | 0.2.21 | databricks-feature-engineering | 0.7.0 |
databricks-sdk | 0.30.0 | наборы данных | 2.20.0 | dbl-tempo | 0.1.26 |
dbus-python | 1.3.2 | debugpy | 1.6.7 | decorator | 5.1.1 |
глубокое время | 0.14.4 | defusedxml | 0.7.1 | Устарело | 1.2.14 |
dill | 0.3.8 | distlib | 0.3.8 | dm-tree | 0.1.8 |
docstring-to-markdown | 0,11 | entrypoints | 0,4 | evaluate | 0.4.2 |
executing | 0.8.3 | facets-overview | 1.1.1 | Farama-Notifications | 0.0.4 |
fastjsonschema | 2.20.0 | fasttext-wheel | 0.9.2 | filelock | 3.13.1 |
Flask | 2.2.5 | flatbuffers | 24.3.25 | шрифтовые инструменты | 4.51.0 |
fqdn | 1.5.1 | замороженный список | 1.4.0 | fsspec | 2023.5.0 |
будущее | 0.18.3 | gast | 0.4.0 | gitdb | 4.0.11 |
GitPython | 3.1.37 | google-api-core | 2.20.0 | google-auth | 2.21.0 |
google-auth-oauthlib | 1.0.0 | google-cloud-core | 2.4.1 | google-cloud-storage | 2.10.0 |
google-crc32c | 1.6.0 | google-pasta | 0.2.0 | google-resumable-media | 2.7.2 |
googleapis-common-protos | 1.65.0 | gql | 3.5.0 | graphql-core | 3.2.4 |
greenlet | 3.0.1 | grpcio | 1.60.0 | grpcio-status | 1.60.0 |
gunicorn | 20.1.0 | gviz-api | 1.10.0 | спортзал | 0.28.1 |
h11 | 0.14.0 | h5py | 3.11.0 | hjson | 3.1.0 |
holidays | 0,54 | htmlmin | 0.1.12 | httpcore | 1.0.5 |
httplib2 | 0.20.4 | httpx | 0.27.2 | huggingface-hub | 0.24.5 |
idna | 3,7 | ImageHash | 4.3.1 | imageio | 2.33.1 |
imbalanced-learn | 0.12.3 | importlib-metadata | 6.0.0 | importlib_resources | 6.4.5 |
гнуть | 7.3.1 | ipyflow-core | 0.0.201 | ipykernel | 6.28.0 |
ipython | 8.25.0 | ipython-genutils | 0.2.0 | ipywidgets | 7.7.2 |
isodate | 0.6.1 | isoduration | 20.11.0 | itsdangerous | 2.2.0 |
jaraco.context | 5.3.0 | jaraco.functools | 4.0.1 | jaraco.text | 3.12.1 |
jax-jumpy | 1.0.0 | jedi | 0.19.1 | Jinja2 | 3.1.4 |
jiter | 0.5.0 | jmespath | 1.0.1 | joblib | 1.4.2 |
joblibspark | 0.5.1 | json5 | 0.9.6 | jsonpatch | 1.33 |
jsonpointer | 3.0.0 | jsonschema | 4.19.2 | jsonschema-спецификации | 2023.7.1 |
jupyter-events | 0.10.0 | jupyter-lsp | 2.2.0 | jupyter_client | 8.6.0 |
jupyter_core | 5.7.2 | jupyter_server | 2.14.1 | jupyter_server_terminals | 0.4.4 |
jupyterlab | 4.0.11 | jupyterlab-pygments | 0.1.2 | jupyterlab_server | 2.25.1 |
keras | 3.5.0 | kiwisolver | 1.4.4 | langchain | 0.2.12 |
langchain-core | 0.2.41 | langchain-text-splitters | 0.2.4 | langcodes | 3.4.1 |
langsmith | 0.1.129 | language_data | 1.2.0 | launchpadlib | 1.11.0 |
lazr.restfulclient | 0.14.6 | lazr.uri | 1.0.6 | lazy_loader | 0,4 |
libclang | 15.0.6.1 | librosa | 0.10.2 | lightgbm; | 4.5.0 |
молния-служебные программы | 0.11.7 | linkify-it-py | 2.0.0 | llvmlite | 0.42.0 |
lz4 | 4.3.2 | Mako | 1.2.0 | мариса-три | 1.2.0 |
Markdown | 3.4.1 | markdown-it-py | 2.2.0 | MarkupSafe | 2.1.3 |
matplotlib | 3.8.4 | matplotlib-inline | 0.1.6 | Маккейб | 0.7.0 |
mdit-py-plugins | 0.3.0 | mdurl | 0.1.0 | memray | 1.14.0 |
mistune | 2.0.4 | ml-dtypes | 0.4.1 | mlflow-skinny | 2.15.1 |
more-itertools | 10.3.0 | mosaicml-cli | 0.6.41 | mosaicml-streaming | 0.8.0 |
mpmath | 1.3.0 | msal | 1.31.0 | msal-extensions | 1.2.0 |
msgpack | 1.1.0 | multidict | 6.0.4 | multimethod | 1.12 |
многопроцессная обработка | 0.70.16 | murmurhash | 1.0.10 | mypy | 1.10.0 |
mypy-extensions | 1.0.0 | namex | 0.0.8 | nbclient | 0.8.0 |
nbconvert | 7.10.0 | nbformat | 5.9.2 | nest-asyncio | 1.6.0 |
networkx | 3.2.1 | ninja | 1.11.1.1 | nltk | 3.8.1 |
nodeenv | 1.9.1 | записная книжка | 7.0.8 | notebook_shim | 0.2.3 |
numba | 0.59.1 | numpy | 1.26.4 | nvidia-ml-py | 12.560.30 |
oauthlib | 3.2.0 | oci | 2.135.0 | openai | 1.40.2 |
opencensus | 0.11.4 | opencensus-context | 0.1.3 | opentelemetry-api | 1.27.0 |
opentelemetry-sdk | 1.27.0 | соглашения opentelemetry-semantic-conventions | 0.48b0 | opt_einsum | 3.4.0 |
optree | 0.12.1 | optuna | 3.6.1 | optuna-integration | 3.6.0 |
orjson | 3.10.7 | Переопределения | 7.4.0 | во внешнем виде | 24,1 |
pandas | 1.5.3 | pandocfilters | 1.5.0 | paramiko | 3.4.0 |
parso | 0.8.3 | pathspec | 0.10.3 | patsy | 0.5.6 |
pexpect | 4.8.0 | phik | 0.12.4 | pillow | 10.3.0 |
pip | 24,2 | platformdirs | 3.10.0 | график | 5.22.0 |
pluggy | 1.0.0 | pmdarima | 2.0.4 | pooch | 1.8.2 |
portalocker | 2.10.1 | preshed | 3.0.9 | prometheus-client | 0.14.1 |
prompt-toolkit | 3.0.43 | пророк | 1.1.5 | proto-plus | 1.24.0 |
protobuf | 4.24.1 | psutil | 5.9.0 | psycopg2 | 2.9.3 |
ptyprocess | 0.7.0 | pure-eval | 0.2.2 | py-cpuinfo | 9.0.0 |
py-spy | 0.3.14 | pyarrow | 15.0.2 | pyarrow-hotfix | 0,6 |
pyasn1 | 0.4.8 | pyasn1-modules | 0.2.8 | pybind11 | 2.13.6 |
pyccolo | 0.0.65 | pycparser | 2.21 | pydantic | 2.8.2 |
pydantic_core | 2.20.1 | pyflakes | 3.2.0 | Pygments | 2.15.1 |
PyGObject | 3.48.2 | PyJWT | 2.7.0 | PyNaCl | 1.5.0 |
pyodbc | 5.0.1 | pyOpenSSL | 24.0.0 | pyparsing | 3.0.9 |
pyright | 1.1.294 | pytesseract | 0.3.10 | python-dateutil | 2.9.0.post0 |
python-editor | 1.0.4 | python-json-logger | 2.0.7 | python-lsp-jsonrpc | 1.1.2 |
python-lsp-server | 1.10.0 | python-snappy | 0.6.1 | pytoolconfig | 1.2.6 |
pytorch-ranger | 0.1.1 | pytz | 2024.1 | PyWavelets | 1.5.0 |
PyYAML | 6.0.1 | pyzmq | 25.1.2 | вопросительное | 1.10.0 |
луч | 2.35.0 | referencing | 0.30.2 | regex | 2023.10.3 |
requests | 2.32.2 | requests-oauthlib | 1.3.1 | rfc3339-validator | 0.1.4 |
rfc3986-validator | 0.1.1 | rich | 13.3.5 | верёвка | 1.12.0 |
rpds-py | 0.10.6 | rsa | 4,9 | ruamel.yaml | 0.18.6 |
ruamel.yaml.clib | 0.2.8 | s3transfer | 0.10.2 | безопасные средства | 0.4.4 |
scikit-image | 0.23.2 | scikit-learn | 1.4.2 | scipy | 1.13.1 |
мореборн | 0.13.2 | Send2Trash | 1.8.2 | преобразователи предложений | 3.0.1 |
предложение | 0.2.0 | setuptools | 74.0.0 | shap | 0.46.0 |
shellingham | 1.5.4 | simplejson | 3.17.6 | six | 1.16.0 |
Среза | 0.0.8 | smart-open | 5.2.1 | smmap | 5.0.0 |
sniffio | 1.3.0 | soundfile | 0.12.1 | soupsieve | 2.5 |
soxr | 0.5.0.post1 | spacy | 3.7.5 | spacy-legacy | 3.0.12 |
spacy-loggers | 1.0.5 | SQLAlchemy | 2.0.30 | sqlparse | 0.4.2 |
srsly | 2.4.8 | ssh-import-id | 5,11 | stack-data | 0.2.0 |
стэнио | 0.5.1 | statsmodels | 0.14.2 | sympy | 1.12 |
tabulate | 0.9.0 | tangled-up-in-unicode | 0.2.0 | tenacity | 8.2.2 |
tensorboard | 2.17.0 | tensorboard-data-server | 0.7.2 | tensorboard-plugin-profile | 2.17.0 |
tensorboardX | 2.6.2.2 | tensorflow | 2.17.0 | tensorflow-estimator | 2.15.0 |
termcolor | 2.4.0 | terminado | 0.17.1 | текстовый | 0.81.0 |
tf_keras | 2.17.0 | thinc | 8.2.5 | threadpoolctl | 2.2.0 |
tifffile | 2023.4.12 | тиктокен | 0.7.0 | tinycss2 | 1.2.1 |
tokenize-rt | 4.2.1 | токенизаторы | 0.19.1 | tomli | 2.0.1 |
torch | 2.4.0+ЦП | факел-оптимизатор | 0.3.0 | факел | 0.0.7 |
факелметрики | 1.4.0.post0 | torchvision | 0.19.0+цп | tornado | 6.4.1 |
tqdm | 4.66.4 | traitlets | 5.14.3 | Трансформаторы | 4.44.0 |
typeguard | 4.3.0 | typer | 0.12.5 | types-protobuf | 3.20.3 |
types-psutil | 5.9.0 | types-pytz | 2023.3.1.1 | types-PyYAML | 6.0.0 |
типы-запросы | 2.31.0.0 | типы-setuptools | 68.0.0.0 | типы-шесть | 1.16.0 |
types-urllib3 | 1.26.25.14 | typing_extensions | 4.11.0 | uc-micro-py | 1.0.1 |
ujson | 5.10.0 | unattended-upgrades | 0,1 | URI-template | 1.3.0 |
urllib3 | 1.26.16 | проверяющие элементы | 0.34.0 | virtualenv | 20.26.2 |
visions | 0.7.5 | wadllib | 1.3.6 | wasabi | 1.1.3 |
wcwidth | 0.2.5 | ласка | 0.4.1 | webcolors | 24.8.0 |
webencodings | 0.5.1 | websocket-client | 1.8.0 | websockets | 11.0.3 |
Werkzeug | 3.0.3 | whatthepatch | 1.0.2 | wheel | 0.43.0 |
wordcloud | 1.9.3 | wrapt | 1.14.1 | XGBoost | 2.0.3 |
xgboost-ray | 0.1.19 | xxhash | 3.4.1 | yapf | 0.33.0 |
yarl | 1.9.3 | ydata-profiling | 4.9.0 | zipp | 3.17.0 |
zstd | 1.5.5.1 |
Библиотеки Python в кластерах GPU
Библиотека | Версия | Библиотека | Версия | Библиотека | Версия |
---|---|---|---|---|---|
absl-py | 1.0.0 | accelerate | 0.33.0 | aiohttp | 3.9.5 |
aiohttp-cors | 0.7.0 | aiosignal | 1.2.0 | аннотированные типы | 0.7.0 |
anyio | 4.2.0 | argcomplete | 3.5.0 | argon2-cffi | 21.3.0 |
argon2-cffi-bindings | 21.2.0 | Стрелка | 1.2.3 | astor | 0.8.1 |
asttokens | 2.0.5 | astunparse | 1.6.3 | async-lru | 2.0.4 |
attrs | 23.1.0 | аудиопоток | 3.0.1 | autocommand | 2.2.2 |
azure-core | 1.31.0 | azure-cosmos | 4.3.1 | azure-identity | 1.18.0 |
azure-storage-blob | 12.23.1 | azure-storage-file-datalake | 12.17.0 | Babel | 2.11.0 |
backoff | 2.2.1 | backports.tarfile | 1.2.0 | bcrypt | 3.2.0 |
beautifulsoup4 | 4.12.3 | black | 24.4.2 | bleach | 4.1.0 |
blinker | 1.7.0 | blis | 0.7.11 | boto3 | 1.34.69 |
botocore | 1.34.69 | Brotli | 1.0.9 | cachetools | 5.3.3 |
catalogue | 2.0.10 | кодировщики категорий | 2.6.3 | certifi | 2024.6.2 |
cffi | 1.16.0 | chardet | 4.0.0 | charset-normalizer | 2.0.4 |
авторазрыв | 2.0.0 | щелчок | 8.1.7 | cloudpathlib | 0.19.0 |
cloudpickle | 2.2.1 | cmdstanpy | 1.2.4 | цветастые | 0.5.6 |
colorlog | 6.8.2 | comm | 0.2.1 | composer | 0.24.1 |
сласти | 0.1.5 | configparser | 5.2.0 | контурная диаграмма | 1.2.0 |
coolname | 2.2.0 | криптография | 42.0.5 | cycler | 0.11.0 |
cymem | 2.0.8 | Cython | 3.0.11 | дацит | 1.8.1 |
databricks-automl-runtime | 0.2.21 | databricks-feature-engineering | 0.7.0 | databricks-sdk | 0.30.0 |
наборы данных | 2.20.0 | dbl-tempo | 0.1.26 | dbus-python | 1.3.2 |
debugpy | 1.6.7 | decorator | 5.1.1 | глубокое время | 0.14.4 |
defusedxml | 0.7.1 | Устарело | 1.2.14 | dill | 0.3.8 |
distlib | 0.3.8 | dm-tree | 0.1.8 | docstring-to-markdown | 0,11 |
einops | 0.8.0 | entrypoints | 0,4 | evaluate | 0.4.2 |
executing | 0.8.3 | facets-overview | 1.1.1 | Farama-Notifications | 0.0.4 |
fastjsonschema | 2.20.0 | fasttext-wheel | 0.9.2 | filelock | 3.13.1 |
flash_attn | 2.5.6 | Flask | 2.2.5 | flatbuffers | 24.3.25 |
шрифтовые инструменты | 4.51.0 | fqdn | 1.5.1 | замороженный список | 1.4.0 |
fsspec | 2023.5.0 | будущее | 0.18.3 | gast | 0.4.0 |
gitdb | 4.0.11 | GitPython | 3.1.37 | google-api-core | 2.20.0 |
google-auth | 2.21.0 | google-auth-oauthlib | 1.0.0 | google-cloud-core | 2.4.1 |
google-cloud-storage | 2.10.0 | google-crc32c | 1.6.0 | google-pasta | 0.2.0 |
google-resumable-media | 2.7.2 | googleapis-common-protos | 1.65.0 | gql | 3.5.0 |
graphql-core | 3.2.4 | greenlet | 3.0.1 | grpcio | 1.60.0 |
grpcio-status | 1.60.0 | gunicorn | 20.1.0 | gviz-api | 1.10.0 |
спортзал | 0.28.1 | h11 | 0.14.0 | h5py | 3.11.0 |
hjson | 3.1.0 | holidays | 0,54 | htmlmin | 0.1.12 |
httpcore | 1.0.5 | httplib2 | 0.20.4 | httpx | 0.27.2 |
huggingface-hub | 0.24.5 | idna | 3,7 | ImageHash | 4.3.1 |
imageio | 2.33.1 | imbalanced-learn | 0.12.3 | importlib-metadata | 6.0.0 |
importlib_resources | 6.4.5 | гнуть | 7.3.1 | ipyflow-core | 0.0.201 |
ipykernel | 6.28.0 | ipython | 8.25.0 | ipython-genutils | 0.2.0 |
ipywidgets | 7.7.2 | isodate | 0.6.1 | isoduration | 20.11.0 |
itsdangerous | 2.2.0 | jaraco.context | 5.3.0 | jaraco.functools | 4.0.1 |
jaraco.text | 3.12.1 | jax-jumpy | 1.0.0 | jedi | 0.19.1 |
Jinja2 | 3.1.4 | jiter | 0.5.0 | jmespath | 1.0.1 |
joblib | 1.4.2 | joblibspark | 0.5.1 | json5 | 0.9.6 |
jsonpatch | 1.33 | jsonpointer | 3.0.0 | jsonschema | 4.19.2 |
jsonschema-спецификации | 2023.7.1 | jupyter-events | 0.10.0 | jupyter-lsp | 2.2.0 |
jupyter_client | 8.6.0 | jupyter_core | 5.7.2 | jupyter_server | 2.14.1 |
jupyter_server_terminals | 0.4.4 | jupyterlab | 4.0.11 | jupyterlab-pygments | 0.1.2 |
jupyterlab_server | 2.25.1 | keras | 3.5.0 | kiwisolver | 1.4.4 |
langchain | 0.2.12 | langchain-core | 0.2.41 | langchain-text-splitters | 0.2.4 |
langcodes | 3.4.1 | langsmith | 0.1.129 | language_data | 1.2.0 |
launchpadlib | 1.11.0 | lazr.restfulclient | 0.14.6 | lazr.uri | 1.0.6 |
lazy_loader | 0,4 | libclang | 15.0.6.1 | librosa | 0.10.2 |
lightgbm; | 4.5.0 | молния-служебные программы | 0.11.7 | linkify-it-py | 2.0.0 |
llvmlite | 0.42.0 | lz4 | 4.3.2 | Mako | 1.2.0 |
мариса-три | 1.2.0 | Markdown | 3.4.1 | markdown-it-py | 2.2.0 |
MarkupSafe | 2.1.3 | matplotlib | 3.8.4 | matplotlib-inline | 0.1.6 |
Маккейб | 0.7.0 | mdit-py-plugins | 0.3.0 | mdurl | 0.1.0 |
memray | 1.14.0 | mistune | 2.0.4 | ml-dtypes | 0.4.1 |
mlflow-skinny | 2.15.1 | more-itertools | 10.3.0 | mosaicml-cli | 0.6.41 |
mosaicml-streaming | 0.8.0 | mpmath | 1.3.0 | msal | 1.31.0 |
msal-extensions | 1.2.0 | msgpack | 1.1.0 | multidict | 6.0.4 |
multimethod | 1.12 | многопроцессная обработка | 0.70.16 | murmurhash | 1.0.10 |
mypy | 1.10.0 | mypy-extensions | 1.0.0 | namex | 0.0.8 |
nbclient | 0.8.0 | nbconvert | 7.10.0 | nbformat | 5.9.2 |
nest-asyncio | 1.6.0 | networkx | 3.2.1 | ninja | 1.11.1.1 |
nltk | 3.8.1 | nodeenv | 1.9.1 | записная книжка | 7.0.8 |
notebook_shim | 0.2.3 | numba | 0.59.1 | numpy | 1.26.4 |
nvidia-cublas-cu12 | 12.4.2.65 | nvidia-cuda-cupti-cu12 | 12.4.99 | nvidia-cuda-nvrtc-cu12 | 12.4.99 |
nvidia-cuda-runtime-cu12 | 12.4.99 | nvidia-cudnn-cu12 | 9.1.0.70 | nvidia-cufft-cu12 | 11.2.0.44 |
nvidia-curand-cu12 | 10.3.5.119 | nvidia-cusolver-cu12 | 11.6.0.99 | nvidia-cusparse-cu12 | 12.3.0.142 |
nvidia-ml-py | 12.560.30 | nvidia-nccl-cu12 | 2.20.5 | nvidia-nvjitlink-cu12 | 12.4.99 |
nvidia-nvtx-cu12 | 12.4.99 | oauthlib | 3.2.0 | oci | 2.135.0 |
openai | 1.40.2 | opencensus | 0.11.4 | opencensus-context | 0.1.3 |
opentelemetry-api | 1.27.0 | opentelemetry-sdk | 1.27.0 | соглашения opentelemetry-semantic-conventions | 0.48b0 |
opt_einsum | 3.4.0 | optree | 0.12.1 | optuna | 3.6.1 |
optuna-integration | 3.6.0 | orjson | 3.10.7 | Переопределения | 7.4.0 |
во внешнем виде | 24,1 | pandas | 1.5.3 | pandocfilters | 1.5.0 |
paramiko | 3.4.0 | parso | 0.8.3 | pathspec | 0.10.3 |
patsy | 0.5.6 | pexpect | 4.8.0 | phik | 0.12.4 |
pillow | 10.3.0 | pip | 24,2 | platformdirs | 3.10.0 |
график | 5.22.0 | pluggy | 1.0.0 | pmdarima | 2.0.4 |
pooch | 1.8.2 | portalocker | 2.10.1 | preshed | 3.0.9 |
prometheus-client | 0.14.1 | prompt-toolkit | 3.0.43 | пророк | 1.1.5 |
proto-plus | 1.24.0 | protobuf | 4.24.1 | psutil | 5.9.0 |
psycopg2 | 2.9.3 | ptyprocess | 0.7.0 | pure-eval | 0.2.2 |
py-cpuinfo | 9.0.0 | py-spy | 0.3.14 | pyarrow | 15.0.2 |
pyarrow-hotfix | 0,6 | pyasn1 | 0.4.8 | pyasn1-modules | 0.2.8 |
pybind11 | 2.13.6 | pyccolo | 0.0.65 | pycparser | 2.21 |
pydantic | 2.8.2 | pydantic_core | 2.20.1 | pyflakes | 3.2.0 |
Pygments | 2.15.1 | PyGObject | 3.48.2 | PyJWT | 2.7.0 |
PyNaCl | 1.5.0 | pyodbc | 5.0.1 | pyOpenSSL | 24.0.0 |
pyparsing | 3.0.9 | pyright | 1.1.294 | pytesseract | 0.3.10 |
python-dateutil | 2.9.0.post0 | python-editor | 1.0.4 | python-json-logger | 2.0.7 |
python-lsp-jsonrpc | 1.1.2 | python-lsp-server | 1.10.0 | python-snappy | 0.6.1 |
pytoolconfig | 1.2.6 | pytorch-ranger | 0.1.1 | pytz | 2024.1 |
PyWavelets | 1.5.0 | PyYAML | 6.0.1 | pyzmq | 25.1.2 |
вопросительное | 1.10.0 | луч | 2.35.0 | referencing | 0.30.2 |
regex | 2023.10.3 | requests | 2.32.2 | requests-oauthlib | 1.3.1 |
rfc3339-validator | 0.1.4 | rfc3986-validator | 0.1.1 | rich | 13.3.5 |
верёвка | 1.12.0 | rpds-py | 0.10.6 | rsa | 4,9 |
ruamel.yaml | 0.18.6 | ruamel.yaml.clib | 0.2.8 | s3transfer | 0.10.2 |
безопасные средства | 0.4.4 | scikit-image | 0.23.2 | scikit-learn | 1.4.2 |
scipy | 1.13.1 | мореборн | 0.13.2 | Send2Trash | 1.8.2 |
преобразователи предложений | 3.0.1 | предложение | 0.2.0 | setuptools | 74.0.0 |
shap | 0.46.0 | shellingham | 1.5.4 | simplejson | 3.17.6 |
six | 1.16.0 | Среза | 0.0.8 | smart-open | 5.2.1 |
smmap | 5.0.0 | sniffio | 1.3.0 | soundfile | 0.12.1 |
soupsieve | 2.5 | soxr | 0.5.0.post1 | spacy | 3.7.5 |
spacy-legacy | 3.0.12 | spacy-loggers | 1.0.5 | SQLAlchemy | 2.0.30 |
sqlparse | 0.4.2 | srsly | 2.4.8 | ssh-import-id | 5,11 |
stack-data | 0.2.0 | стэнио | 0.5.1 | statsmodels | 0.14.2 |
sympy | 1.12 | tabulate | 0.9.0 | tangled-up-in-unicode | 0.2.0 |
tenacity | 8.2.2 | tensorboard | 2.17.0 | tensorboard-data-server | 0.7.2 |
tensorboard-plugin-profile | 2.17.0 | tensorboardX | 2.6.2.2 | tensorflow | 2.17.0 |
tensorflow-estimator | 2.15.0 | termcolor | 2.4.0 | terminado | 0.17.1 |
текстовый | 0.81.0 | tf_keras | 2.17.0 | thinc | 8.2.5 |
threadpoolctl | 2.2.0 | tifffile | 2023.4.12 | тиктокен | 0.7.0 |
tinycss2 | 1.2.1 | tokenize-rt | 4.2.1 | токенизаторы | 0.19.1 |
tomli | 2.0.1 | torch | 2.4.0+cu124 | факел-оптимизатор | 0.3.0 |
факел | 0.0.7 | факелметрики | 1.4.0.post0 | torchvision | 0.19.0+cu124 |
tornado | 6.4.1 | tqdm | 4.66.4 | traitlets | 5.14.3 |
Трансформаторы | 4.44.0 | тритон | 3.0.0 | typeguard | 4.3.0 |
typer | 0.12.5 | types-protobuf | 3.20.3 | types-psutil | 5.9.0 |
types-pytz | 2023.3.1.1 | types-PyYAML | 6.0.0 | типы-запросы | 2.31.0.0 |
типы-setuptools | 68.0.0.0 | типы-шесть | 1.16.0 | types-urllib3 | 1.26.25.14 |
typing_extensions | 4.11.0 | uc-micro-py | 1.0.1 | ujson | 5.10.0 |
unattended-upgrades | 0,1 | URI-template | 1.3.0 | urllib3 | 1.26.16 |
проверяющие элементы | 0.34.0 | virtualenv | 20.26.2 | visions | 0.7.5 |
wadllib | 1.3.6 | wasabi | 1.1.3 | wcwidth | 0.2.5 |
ласка | 0.4.1 | webcolors | 24.8.0 | webencodings | 0.5.1 |
websocket-client | 1.8.0 | websockets | 11.0.3 | Werkzeug | 3.0.3 |
whatthepatch | 1.0.2 | wheel | 0.43.0 | wordcloud | 1.9.3 |
wrapt | 1.14.1 | XGBoost | 2.0.3 | xgboost-ray | 0.1.19 |
xxhash | 3.4.1 | yapf | 0.33.0 | yarl | 1.9.3 |
ydata-profiling | 4.9.0 | zipp | 3.17.0 | zstd | 1.5.5.1 |
Библиотеки R
Библиотеки R идентичны библиотекам R в Databricks Runtime 16.0.
Библиотеки Java и Scala (кластер Scala 2.12)
Помимо библиотек Java и Scala в Databricks Runtime 16.0, Databricks Runtime 16.0 ML содержит следующие JAR:
Кластеры ЦП
ИД группы | Идентификатор артефакта | Версия |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.dmlc | xgboost4j-spark_2.12 | 1.7.3 |
ml.dmlc | xgboost4j_2.12 | 1.7.3 |
org.graphframes | graphframes_2.12 | 0.8.4-db1-spark3.5 |
org.mlflow | mlflow-client | 2.15.1 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |
Кластеры GPU
ИД группы | Идентификатор артефакта | Версия |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.dmlc | xgboost4j-gpu_2.12 | 1.7.3 |
ml.dmlc | xgboost4j-spark-gpu_2.12 | 1.7.3 |
org.graphframes | graphframes_2.12 | 0.8.4-db1-spark3.5 |
org.mlflow | mlflow-client | 2.15.1 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |