Учебник по расширениям интеллектуального анализа данных «Покупатель велосипеда»
Применимо к: SQL Server 2016 Preview
В этом учебнике рассматривается, как создавать, обучать и исследовать модели интеллектуального анализа данных с помощью языка запросов расширений интеллектуального анализа данных. Затем создаются прогнозы на основе моделей интеллектуального анализа данных, которые позволяют определить, купит ли заказчик велосипед.
Модели интеллектуального анализа данных будут созданы на основе данных, содержащихся в образце базы данных AdventureWorksDW2012, где хранятся данные вымышленной компании Компания Adventure Works Cycles. Компания Adventure Works Cycles является большой транснациональной производственной организацией. Компания изготавливает и продает велосипеды из металла и композитных материалов в Северной Америке, а также на европейском и азиатском рынках. Хотя основное производство расположено в городе Ботель, штат Вашингтон, и имеет 290 служащих, существует несколько региональных групп продаж, расположенных на территории международных рынков сбыта. Дополнительные сведения о AdventureWorksDW2012 образца базы данных см. в разделе решения интеллектуального анализа данных.
Сценарий учебника
Компания Adventure Works Cycles решила расширить анализ данных путем создания пользовательского приложения, которое использует возможности интеллектуального анализа данных. Целью этого пользовательского приложения является обеспечение следующих возможностей.
В качестве входных данных принять особые характеристики потенциального заказчика и предсказать, купит ли этот заказчик велосипед.
В качестве входных данных принять список потенциальных заказчиков, а также их характеристики, и предсказать, купит ли кто-нибудь из заказчиков велосипед.
В первом случае данные о заказчике предоставляются на регистрационной странице заказчика, а во втором случае список заказчиков предоставляется отделом маркетинга компании Компания Adventure Works Cycles.
Кроме того, маркетинговому отделу потребовалась возможность группировки существующих заказчиков по категориям на основе таких характеристик, как место жительства, количество детей, расстояние до работы. Возможно, эти кластеры могли бы помочь выявить особые категории заказчиков. Для этого потребуется дополнительная модель интеллектуального анализа данных.
Microsoft SQL Server Службы Analysis Services предоставляет несколько средств, которые можно использовать для выполнения этих задач.
Язык DMX-запросов
Алгоритм дерева принятия решений Microsoft и алгоритм кластеризации (Майкрософт)
Редактор запросов в SQL Server Management Studio
Расширения интеллектуального анализа данных представляют собой язык запросов, предоставляемый службами Службы Analysis Services и используемый для создания и работы с моделями интеллектуального анализа данных. Microsoft Алгоритм дерева принятия решений создает модели, которые можно использовать для предсказания, купит ли кто-либо велосипед. Результирующая модель принимает в качестве входных данных отдельного заказчика или таблицу заказчиков. Microsoft Алгоритм кластеризации можно создать группы заказчиков на основе общих характеристик. Целью этого учебника является предоставление скриптов расширений интеллектуального анализа данных, которые используются в пользовательском приложении.
Дополнительные сведения:решения интеллектуального анализа данных
Структура и модели интеллектуального анализа данных
Перед созданием инструкций для расширения интеллектуального анализа данных важно понять, какие основные объекты служб Службы Analysis Services используются для создания моделей интеллектуального анализа данных. Структура интеллектуального анализа — это структура данных, определяющая домен данных, на основе которого строятся модели интеллектуального анализа. Одна структура интеллектуального анализа может содержать несколько моделей интеллектуального анализа данных, совместно использующих один домен. Модель интеллектуального анализа данных применяет алгоритм интеллектуального анализа к данным, представленным структурой интеллектуального анализа данных.
Строительными блоками структуры интеллектуального анализа являются столбцы, которые описывают данные, содержащиеся в источнике данных. Эти столбцы содержат такие сведения, как тип данных, тип содержимого и способы распределения данных.
Модели интеллектуального анализа данных должны включать ключевой столбец, описанный в структуре интеллектуального анализа данных, а также набор оставшихся столбцов. Модель интеллектуального анализа данных определяет использование каждого столбца и определяет алгоритм, используемый для создания этой модели. Например, в расширении интеллектуального анализа данных можно указать столбец в качестве ключевого или столбца типа PREDICT. Если столбец не указан, он считается входным столбцом.
В расширении интеллектуального анализа данных существует два способа создания моделей интеллектуального анализа данных. Можно либо создать структуру интеллектуального анализа данных и связанную модель интеллектуального анализа данных вместе, используя инструкцию CREATE MINING MODEL, либо сначала создать структуру интеллектуального анализа данных, используя инструкцию CREATE MINING STRUCTURE, а затем добавить к структуре модель интеллектуального анализа данных, используя инструкцию ALTER STRUCTURE. Описание этих разрешений приводится в следующей таблице.
CREATE MINING MODEL
Эта инструкция используется для одновременного создания структуры интеллектуального анализа данных и связанной с ней модели интеллектуального анализа данных с одним и тем же именем. К имени модели интеллектуального анализа данных добавляется слово «Structure», чтобы отличить ее от структуры интеллектуального анализа данных. Эта инструкция полезна, если создается структура интеллектуального анализа данных, которая будет содержать только одну модель интеллектуального анализа данных.
Дополнительные сведения см. в статье CREATE MINING MODEL (расширения интеллектуального анализа данных).
ALTER MINING STRUCTURE
Эта инструкция используется для добавления модели интеллектуального анализа данных к уже существующей на сервере структуре интеллектуального анализа данных. Эта инструкция полезна, если нужно создать структуру интеллектуального анализа данных, которая будет содержать несколько различных моделей интеллектуального анализа данных. Есть несколько причин, почему может понадобиться добавить несколько моделей интеллектуального анализа данных в структуру интеллектуального анализа данных. Например, чтобы выявить лучший алгоритм, можно создать несколько моделей интеллектуального анализа данных, в которых используются разные алгоритмы. Можно создать несколько различных моделей, в которых используется один и тот же алгоритм, но при этом различаются настройки определенного параметра, чтобы выяснить, какое значение параметра является наилучшим.
Дополнительные сведения см. в разделе ALTER MINING STRUCTURE ( расширений интеллектуального анализа данных ).
В этом учебнике создается структура интеллектуального анализа данных, которая содержит несколько моделей, поэтому в учебнике используется второй метод.
Дополнительные сведения см. в разделе
Расширения интеллектуального анализа данных ( расширений интеллектуального анализа данных ) Справочник по, Основные сведения о расширениях интеллектуального анализа данных Select, инструкция, структуры и использования прогнозирующих запросов расширений интеллектуального анализа данных
Обзор учебника
Учебник содержит следующие занятия:
Занятие 1: Создание структуры интеллектуального анализа данных для покупателя велосипеда
На этом занятии вы узнаете, как использовать Создать инструкции для создания структур интеллектуального анализа данных.
Занятие 2: Добавление моделей интеллектуального анализа данных для структуры интеллектуального анализа данных для покупателя велосипеда
На этом занятии вы узнаете, как использовать ALTER инструкции для добавления моделей к структуре интеллектуального анализа данных.
Занятие 3: Обработка структуры интеллектуального анализа данных для покупателя велосипеда
В этом уроке вы узнаете, как использовать INSERT INTO Инструкция для обработки структур интеллектуального анализа данных и их связанные модели интеллектуального анализа.
Занятие 4: Просмотр моделей интеллектуального анализа данных для покупателя велосипеда
На этом занятии вы узнаете, как использовать ВЫБЕРИТЕ инструкции для изучения содержимого моделей интеллектуального анализа данных.
Занятие 5: Выполнение прогнозирующих запросов
На этом занятии вы узнаете, как использовать PREDICTION JOIN инструкции для создания прогнозов по моделям интеллектуального анализа данных.
Требования
Прежде чем выполнять задания этого учебника, убедитесь, что установлены следующие компоненты:
Microsoft SQL Server
Microsoft Службы SQL Server 2005 Analysis Services (SSAS), Службы SQL Server 2008 Analysis Services (SSAS), SQL Server 2016 Analysis Services (SSAS), or SQL Server Службы Analysis Services
База данных AdventureWorksDW2012. В целях повышения безопасности образцы баз данных по умолчанию не установлены. Чтобы установить официальные образцы баз данных для Microsoft SQL Server, посетите образцы баз данных SQL Microsoft и выберите базы данных, которые требуется установить. Дополнительные сведения об установке образцов баз данных см. в разделе первоначальной установки (службы Analysis Services).
См. также:
Учебник по расширениям интеллектуального анализа данных потребительской корзины
Учебник по основам интеллектуального анализа данных