Hızlı Başlangıç: Yüz Tanıma hizmetini kullanma
Önemli
Biyometrik Verileri işlemek için Microsoft ürünlerini veya hizmetlerini kullanıyorsanız, şunlardan sorumlusunuz: (i) saklama süreleri ve yok etme de dahil olmak üzere veri konularına bildirim sağlamak; (ii) veri öznelerinden onay almak; ve (iii) Geçerli Veri Koruma Gereksinimleri kapsamında uygun ve gerekli olan Biyometrik Verileri silme. "Biyometrik Veriler", GDPR'nin 4. Maddesinde belirtilen anlamlara ve varsa diğer veri koruma gereksinimlerindeki eşdeğer koşullara sahip olacaktır. İlgili bilgiler için bkz . Yüz için Veri ve Gizlilik.
Dikkat
Yüz tanıma hizmeti erişimi, Sorumlu yapay zeka ilkelerimizi desteklemek için uygunluk ve kullanım ölçütlerine göre sınırlıdır. Yüz tanıma hizmeti yalnızca Microsoft tarafından yönetilen müşteriler ve iş ortakları tarafından kullanılabilir. Erişim için başvurmak için Yüz Tanıma giriş formunu kullanın. Daha fazla bilgi için Yüz sınırlı erişim sayfasına bakın.
.NET için Yüz Tanıma istemci kitaplığını kullanarak yüz tanımayı kullanmaya başlayın. Azure Yapay Zeka Yüz Tanıma hizmeti, görüntülerdeki insan yüzlerini algılamaya ve tanımaya yönelik gelişmiş algoritmalara erişmenizi sağlar. Paketi yüklemek için bu adımları izleyin ve uzak görüntüleri kullanarak temel yüz tanımaya yönelik örnek kodu deneyin.
Başvuru belgeleri | Kitaplık kaynak kodu | Paketi (NuGet)Örnekleri |
Önkoşullar
- Azure aboneliği - Ücretsiz olarak oluşturun
- Visual Studio IDE veya .NET Core'un geçerli sürümü.
- Azure aboneliğinizi aldıktan sonra anahtarınızı ve uç noktanızı almak için Azure portalında bir Yüz Tanıma kaynağı oluşturun. Dağıtıldıktan sonra Kaynağa git'i seçin.
- Uygulamanızı Yüz Tanıma API'sine bağlamak için oluşturduğunuz kaynaktan anahtara ve uç noktaya ihtiyacınız olacaktır.
- Hizmeti denemek ve daha sonra üretim için ücretli bir katmana yükseltmek için ücretsiz fiyatlandırma katmanını (
F0
) kullanabilirsiniz.
Ortam değişkenlerini oluşturma
Bu örnekte, kimlik bilgilerinizi uygulamayı çalıştıran yerel makinedeki ortam değişkenlerine yazın.
Azure portala gidin. Önkoşullar bölümünde oluşturduğunuz kaynak başarıyla dağıtıldıysa, Sonraki Adımlar'ın altında Kaynağa git'i seçin. Anahtarınızı ve uç noktanızı Anahtarlar ve Uç Nokta sayfasındaki Kaynak Yönetimi'nin altında bulabilirsiniz. Kaynak anahtarınız Azure abonelik kimliğiniz ile aynı değildir.
Anahtarınızın ve uç noktanızın ortam değişkenini ayarlamak için bir konsol penceresi açın ve işletim sisteminiz ve geliştirme ortamınıza yönelik yönergeleri izleyin.
- Ortam değişkenini
FACE_APIKEY
ayarlamak için değerini kaynağınızın anahtarlarından biriyle değiştirin<your_key>
. - Ortam değişkenini
FACE_ENDPOINT
ayarlamak için değerini kaynağınızın uç noktasıyla değiştirin<your_endpoint>
.
Önemli
API anahtarı kullanıyorsanız, bunu Azure Key Vault gibi başka bir yerde güvenli bir şekilde depolayın. API anahtarını doğrudan kodunuzla eklemeyin ve hiçbir zaman herkese açık olarak göndermeyin.
Yapay zeka hizmetleri güvenliği hakkında daha fazla bilgi için bkz . Azure AI hizmetlerine yönelik isteklerin kimliğini doğrulama.
setx FACE_APIKEY <your_key>
setx FACE_ENDPOINT <your_endpoint>
Ortam değişkenlerini ekledikten sonra, konsol penceresi de dahil olmak üzere ortam değişkenlerini okuyacak tüm çalışan programları yeniden başlatmanız gerekebilir.
Yüzleri tanımlama ve doğrulama
Yeni bir C# uygulaması oluşturma
Visual Studio'yu kullanarak yeni bir .NET Core uygulaması oluşturun.
İstemci kitaplığını yükleme
Yeni bir proje oluşturduktan sonra, Çözüm Gezgini proje çözümüne sağ tıklayıp NuGet Paketlerini Yönet'i seçerek istemci kitaplığını yükleyin. Açılan paket yöneticisinde Gözat’ı seçip Ön sürümü dahil et seçeneğini işaretleyin ve
Azure.AI.Vision.Face
için arama yapın. En son sürümü ve ardından Yükle'yi seçin.aşağıdaki kodu Program.cs dosyasına ekleyin.
Not
Giriş formunu kullanarak Yüz Tanıma hizmetine erişim almadıysanız, bu işlevlerden bazıları çalışmaz.
using Azure; using Azure.AI.Vision.Face; namespace FaceQuickstart { class Program { static readonly string LargePersonGroupId = Guid.NewGuid().ToString(); // URL path for the images. const string ImageBaseUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/"; // From your Face subscription in the Azure portal, get your subscription key and endpoint. static readonly string SubscriptionKey = Environment.GetEnvironmentVariable("FACE_APIKEY") ?? "<apikey>"; static readonly string Endpoint = Environment.GetEnvironmentVariable("FACE_ENDPOINT") ?? "<endpoint>"; static void Main(string[] args) { // Recognition model 4 was released in 2021 February. // It is recommended since its accuracy is improved // on faces wearing masks compared with model 3, // and its overall accuracy is improved compared // with models 1 and 2. FaceRecognitionModel RecognitionModel4 = FaceRecognitionModel.Recognition04; // Authenticate. FaceClient client = Authenticate(Endpoint, SubscriptionKey); // Identify - recognize a face(s) in a large person group (a large person group is created in this example). IdentifyInLargePersonGroup(client, ImageBaseUrl, RecognitionModel4).Wait(); Console.WriteLine("End of quickstart."); } /* * AUTHENTICATE * Uses subscription key and region to create a client. */ public static FaceClient Authenticate(string endpoint, string key) { return new FaceClient(new Uri(endpoint), new AzureKeyCredential(key)); } // Detect faces from image url for recognition purposes. This is a helper method for other functions in this quickstart. // Parameter `returnFaceId` of `DetectAsync` must be set to `true` (by default) for recognition purposes. // Parameter `returnFaceAttributes` is set to include the QualityForRecognition attribute. // Recognition model must be set to recognition_03 or recognition_04 as a result. // Result faces with insufficient quality for recognition are filtered out. // The field `faceId` in returned `DetectedFace`s will be used in Verify and Identify. // It will expire 24 hours after the detection call. private static async Task<List<FaceDetectionResult>> DetectFaceRecognize(FaceClient faceClient, string url, FaceRecognitionModel recognitionModel) { // Detect faces from image URL. var response = await faceClient.DetectAsync(new Uri(url), FaceDetectionModel.Detection03, recognitionModel, true, [FaceAttributeType.QualityForRecognition]); IReadOnlyList<FaceDetectionResult> detectedFaces = response.Value; List<FaceDetectionResult> sufficientQualityFaces = new List<FaceDetectionResult>(); foreach (FaceDetectionResult detectedFace in detectedFaces) { QualityForRecognition? faceQualityForRecognition = detectedFace.FaceAttributes.QualityForRecognition; if (faceQualityForRecognition.HasValue && (faceQualityForRecognition.Value != QualityForRecognition.Low)) { sufficientQualityFaces.Add(detectedFace); } } Console.WriteLine($"{detectedFaces.Count} face(s) with {sufficientQualityFaces.Count} having sufficient quality for recognition detected from image `{Path.GetFileName(url)}`"); return sufficientQualityFaces; } /* * IDENTIFY FACES * To identify faces, you need to create and define a large person group. * The Identify operation takes one or several face IDs from DetectedFace or PersistedFace and a LargePersonGroup and returns * a list of Person objects that each face might belong to. Returned Person objects are wrapped as Candidate objects, * which have a prediction confidence value. */ public static async Task IdentifyInLargePersonGroup(FaceClient client, string url, FaceRecognitionModel recognitionModel) { Console.WriteLine("========IDENTIFY FACES========"); Console.WriteLine(); // Create a dictionary for all your images, grouping similar ones under the same key. Dictionary<string, string[]> personDictionary = new Dictionary<string, string[]> { { "Family1-Dad", new[] { "Family1-Dad1.jpg", "Family1-Dad2.jpg" } }, { "Family1-Mom", new[] { "Family1-Mom1.jpg", "Family1-Mom2.jpg" } }, { "Family1-Son", new[] { "Family1-Son1.jpg", "Family1-Son2.jpg" } } }; // A group photo that includes some of the persons you seek to identify from your dictionary. string sourceImageFileName = "identification1.jpg"; // Create a large person group. Console.WriteLine($"Create a person group ({LargePersonGroupId})."); LargePersonGroupClient largePersonGroupClient = new FaceAdministrationClient(new Uri(Endpoint), new AzureKeyCredential(SubscriptionKey)).GetLargePersonGroupClient(LargePersonGroupId); await largePersonGroupClient.CreateAsync(LargePersonGroupId, recognitionModel: recognitionModel); // The similar faces will be grouped into a single large person group person. foreach (string groupedFace in personDictionary.Keys) { // Limit TPS await Task.Delay(250); var createPersonResponse = await largePersonGroupClient.CreatePersonAsync(groupedFace); Guid personId = createPersonResponse.Value.PersonId; Console.WriteLine($"Create a person group person '{groupedFace}'."); // Add face to the large person group person. foreach (string similarImage in personDictionary[groupedFace]) { Console.WriteLine($"Check whether image is of sufficient quality for recognition"); var detectResponse = await client.DetectAsync(new Uri($"{url}{similarImage}"), FaceDetectionModel.Detection03, recognitionModel, false, [FaceAttributeType.QualityForRecognition]); IReadOnlyList<FaceDetectionResult> facesInImage = detectResponse.Value; bool sufficientQuality = true; foreach (FaceDetectionResult face in facesInImage) { QualityForRecognition? faceQualityForRecognition = face.FaceAttributes.QualityForRecognition; // Only "high" quality images are recommended for person enrollment if (faceQualityForRecognition.HasValue && (faceQualityForRecognition.Value != QualityForRecognition.High)) { sufficientQuality = false; break; } } if (!sufficientQuality) { continue; } if (facesInImage.Count != 1) { continue; } // add face to the large person group Console.WriteLine($"Add face to the person group person({groupedFace}) from image `{similarImage}`"); await largePersonGroupClient.AddFaceAsync(personId, new Uri($"{url}{similarImage}"), detectionModel: FaceDetectionModel.Detection03); } } // Start to train the large person group. Console.WriteLine(); Console.WriteLine($"Train person group {LargePersonGroupId}."); Operation operation = await largePersonGroupClient.TrainAsync(WaitUntil.Completed); // Wait until the training is completed. await operation.WaitForCompletionResponseAsync(); Console.WriteLine("Training status: succeeded."); Console.WriteLine(); Console.WriteLine("Pausing for 60 seconds to avoid triggering rate limit on free account..."); await Task.Delay(60000); List<Guid> sourceFaceIds = new List<Guid>(); // Detect faces from source image url. List<FaceDetectionResult> detectedFaces = await DetectFaceRecognize(client, $"{url}{sourceImageFileName}", recognitionModel); // Add detected faceId to sourceFaceIds. foreach (FaceDetectionResult detectedFace in detectedFaces) { sourceFaceIds.Add(detectedFace.FaceId.Value); } // Identify the faces in a large person group. var identifyResponse = await client.IdentifyFromLargePersonGroupAsync(sourceFaceIds, LargePersonGroupId); IReadOnlyList<FaceIdentificationResult> identifyResults = identifyResponse.Value; foreach (FaceIdentificationResult identifyResult in identifyResults) { if (identifyResult.Candidates.Count == 0) { Console.WriteLine($"No person is identified for the face in: {sourceImageFileName} - {identifyResult.FaceId},"); continue; } FaceIdentificationCandidate candidate = identifyResult.Candidates.First(); var getPersonResponse = await largePersonGroupClient.GetPersonAsync(candidate.PersonId); string personName = getPersonResponse.Value.Name; Console.WriteLine($"Person '{personName}' is identified for the face in: {sourceImageFileName} - {identifyResult.FaceId}," + $" confidence: {candidate.Confidence}."); var verifyResponse = await client.VerifyFromLargePersonGroupAsync(identifyResult.FaceId, LargePersonGroupId, candidate.PersonId); FaceVerificationResult verifyResult = verifyResponse.Value; Console.WriteLine($"Verification result: is a match? {verifyResult.IsIdentical}. confidence: {verifyResult.Confidence}"); } Console.WriteLine(); // Delete large person group. Console.WriteLine("========DELETE PERSON GROUP========"); Console.WriteLine(); await largePersonGroupClient.DeleteAsync(); Console.WriteLine($"Deleted the person group {LargePersonGroupId}."); Console.WriteLine(); } } }
Uygulamayı çalıştırma
IDE penceresinin üst kısmındaki Hata Ayıkla düğmesine tıklayarak uygulamayı çalıştırın.
Çıktı
========IDENTIFY FACES========
Create a person group (18d1c443-a01b-46a4-9191-121f74a831cd).
Create a person group person 'Family1-Dad'.
Check whether image is of sufficient quality for recognition
Add face to the person group person(Family1-Dad) from image `Family1-Dad1.jpg`
Check whether image is of sufficient quality for recognition
Add face to the person group person(Family1-Dad) from image `Family1-Dad2.jpg`
Create a person group person 'Family1-Mom'.
Check whether image is of sufficient quality for recognition
Add face to the person group person(Family1-Mom) from image `Family1-Mom1.jpg`
Check whether image is of sufficient quality for recognition
Add face to the person group person(Family1-Mom) from image `Family1-Mom2.jpg`
Create a person group person 'Family1-Son'.
Check whether image is of sufficient quality for recognition
Add face to the person group person(Family1-Son) from image `Family1-Son1.jpg`
Check whether image is of sufficient quality for recognition
Add face to the person group person(Family1-Son) from image `Family1-Son2.jpg`
Train person group 18d1c443-a01b-46a4-9191-121f74a831cd.
Training status: succeeded.
Pausing for 60 seconds to avoid triggering rate limit on free account...
4 face(s) with 4 having sufficient quality for recognition detected from image `identification1.jpg`
Person 'Family1-Dad' is identified for the face in: identification1.jpg - ad813534-9141-47b4-bfba-24919223966f, confidence: 0.96807.
Verification result: is a match? True. confidence: 0.96807
Person 'Family1-Mom' is identified for the face in: identification1.jpg - 1a39420e-f517-4cee-a898-5d968dac1a7e, confidence: 0.96902.
Verification result: is a match? True. confidence: 0.96902
No person is identified for the face in: identification1.jpg - 889394b1-e30f-4147-9be1-302beb5573f3,
Person 'Family1-Son' is identified for the face in: identification1.jpg - 0557d87b-356c-48a8-988f-ce0ad2239aa5, confidence: 0.9281.
Verification result: is a match? True. confidence: 0.9281
========DELETE PERSON GROUP========
Deleted the person group 18d1c443-a01b-46a4-9191-121f74a831cd.
End of quickstart.
İpucu
Yüz Tanıma API'si, doğası gereği statik olan önceden oluşturulmuş bir dizi model üzerinde çalışır (hizmet çalıştırıldığında modelin performansı gerilemez veya iyileşmez). Microsoft modelin arka ucu tamamen yeni bir model sürümüne geçmeden güncelleştirirse modelin ürettiği sonuçlar değişebilir. Modelin daha yeni bir sürümünden yararlanmak için PersonGroup'unuzu yeniden eğitebilir ve daha yeni modeli aynı kayıt görüntülerine sahip bir parametre olarak belirtebilirsiniz.
Kaynakları temizleme
Azure AI hizmetleri aboneliğini temizlemek ve kaldırmak istiyorsanız, kaynağı veya kaynak grubunu silebilirsiniz. Kaynak grubunun silinmesi, kaynak grubuyla ilişkili diğer tüm kaynakları da siler.
Sonraki adımlar
Bu hızlı başlangıçta, temel yüz belirlemeyi yapmak için .NET için Yüz Tanıma istemci kitaplığını kullanmayı öğrendiniz. Ardından farklı yüz algılama modelleri ve kullanım örneğiniz için doğru modeli belirtme hakkında bilgi edinin.
- Yüz Tanıma hizmeti nedir?
- GitHub'da daha kapsamlı örnek kod bulunabilir.
Python için Yüz Tanıma istemci kitaplığını kullanarak yüz tanımaya başlayın. Paketi yüklemek ve temel görevler için örnek kodu denemek için bu adımları izleyin. Yüz Tanıma hizmeti, görüntülerdeki insan yüzlerini algılamak ve tanımak için gelişmiş algoritmalara erişmenizi sağlar. Paketi yüklemek için bu adımları izleyin ve uzak görüntüleri kullanarak temel yüz tanımaya yönelik örnek kodu deneyin.
Başvuru belgeleri | Kitaplık kaynak kodu | Paketi (PiPy)Örnekler |
Önkoşullar
- Azure aboneliği - Ücretsiz olarak oluşturun
- Python 3.x
- Python yüklemeniz pip içermelidir. Pip'in yüklü olup olmadığını denetlemek için komut satırında komutunu çalıştırabilirsiniz
pip --version
. Python'ın en son sürümünü yükleyerek pip alın.
- Python yüklemeniz pip içermelidir. Pip'in yüklü olup olmadığını denetlemek için komut satırında komutunu çalıştırabilirsiniz
- Azure aboneliğinizi aldıktan sonra anahtarınızı ve uç noktanızı almak için Azure portalında bir Yüz Tanıma kaynağı oluşturun. Dağıtıldıktan sonra Kaynağa git'i seçin.
- Uygulamanızı Yüz Tanıma API'sine bağlamak için oluşturduğunuz kaynaktan anahtara ve uç noktaya ihtiyacınız olacaktır.
- Hizmeti denemek ve daha sonra üretim için ücretli bir katmana yükseltmek için ücretsiz fiyatlandırma katmanını (
F0
) kullanabilirsiniz.
Ortam değişkenlerini oluşturma
Bu örnekte, kimlik bilgilerinizi uygulamayı çalıştıran yerel makinedeki ortam değişkenlerine yazın.
Azure portala gidin. Önkoşullar bölümünde oluşturduğunuz kaynak başarıyla dağıtıldıysa, Sonraki Adımlar'ın altında Kaynağa git'i seçin. Anahtarınızı ve uç noktanızı Anahtarlar ve Uç Nokta sayfasındaki Kaynak Yönetimi'nin altında bulabilirsiniz. Kaynak anahtarınız Azure abonelik kimliğiniz ile aynı değildir.
Anahtarınızın ve uç noktanızın ortam değişkenini ayarlamak için bir konsol penceresi açın ve işletim sisteminiz ve geliştirme ortamınıza yönelik yönergeleri izleyin.
- Ortam değişkenini
FACE_APIKEY
ayarlamak için değerini kaynağınızın anahtarlarından biriyle değiştirin<your_key>
. - Ortam değişkenini
FACE_ENDPOINT
ayarlamak için değerini kaynağınızın uç noktasıyla değiştirin<your_endpoint>
.
Önemli
API anahtarı kullanıyorsanız, bunu Azure Key Vault gibi başka bir yerde güvenli bir şekilde depolayın. API anahtarını doğrudan kodunuzla eklemeyin ve hiçbir zaman herkese açık olarak göndermeyin.
Yapay zeka hizmetleri güvenliği hakkında daha fazla bilgi için bkz . Azure AI hizmetlerine yönelik isteklerin kimliğini doğrulama.
setx FACE_APIKEY <your_key>
setx FACE_ENDPOINT <your_endpoint>
Ortam değişkenlerini ekledikten sonra, konsol penceresi de dahil olmak üzere ortam değişkenlerini okuyacak tüm çalışan programları yeniden başlatmanız gerekebilir.
Yüzleri tanımlama ve doğrulama
İstemci kitaplığını yükleme
Python yükledikten sonra şunları kullanarak istemci kitaplığını yükleyebilirsiniz:
pip install --upgrade azure-ai-vision-face
Yeni Python uygulaması oluşturma
Örneğin, quickstart-file.py yeni bir Python betiği oluşturun. Ardından tercih ettiğiniz düzenleyicide veya IDE'de açın ve aşağıdaki kodu yapıştırın.
Not
Giriş formunu kullanarak Yüz Tanıma hizmetine erişim almadıysanız, bu işlevlerden bazıları çalışmaz.
import os import time import uuid from azure.core.credentials import AzureKeyCredential from azure.ai.vision.face import FaceAdministrationClient, FaceClient from azure.ai.vision.face.models import FaceAttributeTypeRecognition04, FaceDetectionModel, FaceRecognitionModel, QualityForRecognition # This key will serve all examples in this document. KEY = os.environ["FACE_APIKEY"] # This endpoint will be used in all examples in this quickstart. ENDPOINT = os.environ["FACE_ENDPOINT"] # Used in the Large Person Group Operations and Delete Large Person Group examples. # LARGE_PERSON_GROUP_ID should be all lowercase and alphanumeric. For example, 'mygroupname' (dashes are OK). LARGE_PERSON_GROUP_ID = str(uuid.uuid4()) # assign a random ID (or name it anything) # Create an authenticated FaceClient. with FaceAdministrationClient(endpoint=ENDPOINT, credential=AzureKeyCredential(KEY)) as face_admin_client, \ FaceClient(endpoint=ENDPOINT, credential=AzureKeyCredential(KEY)) as face_client: ''' Create the LargePersonGroup ''' # Create empty Large Person Group. Large Person Group ID must be lower case, alphanumeric, and/or with '-', '_'. print("Person group:", LARGE_PERSON_GROUP_ID) face_admin_client.large_person_group.create( large_person_group_id=LARGE_PERSON_GROUP_ID, name=LARGE_PERSON_GROUP_ID, recognition_model=FaceRecognitionModel.RECOGNITION04, ) # Define woman friend woman = face_admin_client.large_person_group.create_person( large_person_group_id=LARGE_PERSON_GROUP_ID, name="Woman", ) # Define man friend man = face_admin_client.large_person_group.create_person( large_person_group_id=LARGE_PERSON_GROUP_ID, name="Man", ) # Define child friend child = face_admin_client.large_person_group.create_person( large_person_group_id=LARGE_PERSON_GROUP_ID, name="Child", ) ''' Detect faces and register them to each person ''' # Find all jpeg images of friends in working directory (TBD pull from web instead) woman_images = [ "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/Family1-Mom1.jpg", "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/Family1-Mom2.jpg", ] man_images = [ "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/Family1-Dad1.jpg", "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/Family1-Dad2.jpg", ] child_images = [ "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/Family1-Son1.jpg", "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/Family1-Son2.jpg", ] # Add to woman person for image in woman_images: # Check if the image is of sufficent quality for recognition. sufficient_quality = True detected_faces = face_client.detect_from_url( url=image, detection_model=FaceDetectionModel.DETECTION03, recognition_model=FaceRecognitionModel.RECOGNITION04, return_face_id=True, return_face_attributes=[FaceAttributeTypeRecognition04.QUALITY_FOR_RECOGNITION], ) for face in detected_faces: if face.face_attributes.quality_for_recognition != QualityForRecognition.HIGH: sufficient_quality = False break if not sufficient_quality: continue if len(detected_faces) != 1: continue face_admin_client.large_person_group.add_face_from_url( large_person_group_id=LARGE_PERSON_GROUP_ID, person_id=woman.person_id, url=image, detection_model=FaceDetectionModel.DETECTION03, ) print(f"face {face.face_id} added to person {woman.person_id}") # Add to man person for image in man_images: # Check if the image is of sufficent quality for recognition. sufficient_quality = True detected_faces = face_client.detect_from_url( url=image, detection_model=FaceDetectionModel.DETECTION03, recognition_model=FaceRecognitionModel.RECOGNITION04, return_face_id=True, return_face_attributes=[FaceAttributeTypeRecognition04.QUALITY_FOR_RECOGNITION], ) for face in detected_faces: if face.face_attributes.quality_for_recognition != QualityForRecognition.HIGH: sufficient_quality = False break if not sufficient_quality: continue if len(detected_faces) != 1: continue face_admin_client.large_person_group.add_face_from_url( large_person_group_id=LARGE_PERSON_GROUP_ID, person_id=man.person_id, url=image, detection_model=FaceDetectionModel.DETECTION03, ) print(f"face {face.face_id} added to person {man.person_id}") # Add to child person for image in child_images: # Check if the image is of sufficent quality for recognition. sufficient_quality = True detected_faces = face_client.detect_from_url( url=image, detection_model=FaceDetectionModel.DETECTION03, recognition_model=FaceRecognitionModel.RECOGNITION04, return_face_id=True, return_face_attributes=[FaceAttributeTypeRecognition04.QUALITY_FOR_RECOGNITION], ) for face in detected_faces: if face.face_attributes.quality_for_recognition != QualityForRecognition.HIGH: sufficient_quality = False break if not sufficient_quality: continue if len(detected_faces) != 1: continue face_admin_client.large_person_group.add_face_from_url( large_person_group_id=LARGE_PERSON_GROUP_ID, person_id=child.person_id, url=image, detection_model=FaceDetectionModel.DETECTION03, ) print(f"face {face.face_id} added to person {child.person_id}") ''' Train LargePersonGroup ''' # Train the large person group and set the polling interval to 5s print(f"Train the person group {LARGE_PERSON_GROUP_ID}") poller = face_admin_client.large_person_group.begin_train( large_person_group_id=LARGE_PERSON_GROUP_ID, polling_interval=5, ) poller.wait() print(f"The person group {LARGE_PERSON_GROUP_ID} is trained successfully.") ''' Identify a face against a defined LargePersonGroup ''' # Group image for testing against test_image = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/identification1.jpg" print("Pausing for 60 seconds to avoid triggering rate limit on free account...") time.sleep(60) # Detect faces face_ids = [] # We use detection model 03 to get better performance, recognition model 04 to support quality for # recognition attribute. faces = face_client.detect_from_url( url=test_image, detection_model=FaceDetectionModel.DETECTION03, recognition_model=FaceRecognitionModel.RECOGNITION04, return_face_id=True, return_face_attributes=[FaceAttributeTypeRecognition04.QUALITY_FOR_RECOGNITION], ) for face in faces: # Only take the face if it is of sufficient quality. if face.face_attributes.quality_for_recognition != QualityForRecognition.LOW: face_ids.append(face.face_id) # Identify faces identify_results = face_client.identify_from_large_person_group( face_ids=face_ids, large_person_group_id=LARGE_PERSON_GROUP_ID, ) print("Identifying faces in image") for identify_result in identify_results: if identify_result.candidates: print(f"Person is identified for face ID {identify_result.face_id} in image, with a confidence of " f"{identify_result.candidates[0].confidence}.") # Get topmost confidence score # Verify faces verify_result = face_client.verify_from_large_person_group( face_id=identify_result.face_id, large_person_group_id=LARGE_PERSON_GROUP_ID, person_id=identify_result.candidates[0].person_id, ) print(f"verification result: {verify_result.is_identical}. confidence: {verify_result.confidence}") else: print(f"No person identified for face ID {identify_result.face_id} in image.") print() # Delete the large person group face_admin_client.large_person_group.delete(LARGE_PERSON_GROUP_ID) print(f"The person group {LARGE_PERSON_GROUP_ID} is deleted.") print() print("End of quickstart.")
komutunu kullanarak
python
yüz tanıma uygulamanızı uygulama dizininden çalıştırın.python quickstart-file.py
İpucu
Yüz Tanıma API'si, doğası gereği statik olan önceden oluşturulmuş bir dizi model üzerinde çalışır (hizmet çalıştırıldığında modelin performansı gerilemez veya iyileşmez). Microsoft modelin arka ucu tamamen yeni bir model sürümüne geçmeden güncelleştirirse modelin ürettiği sonuçlar değişebilir. Modelin daha yeni bir sürümünden yararlanmak için PersonGroup'unuzu yeniden eğitebilir ve daha yeni modeli aynı kayıt görüntülerine sahip bir parametre olarak belirtebilirsiniz.
Çıktı
Person group: ad12b2db-d892-48ec-837a-0e7168c18224
face 335a2cb1-5211-4c29-9c45-776dd014b2af added to person 9ee65510-81a5-47e5-9e50-66727f719465
face df57eb50-4a13-4f93-b804-cd108327ad5a added to person 9ee65510-81a5-47e5-9e50-66727f719465
face d8b7b8b8-3ca6-4309-b76e-eeed84f7738a added to person 00651036-4236-4004-88b9-11466c251548
face dffbb141-f40b-4392-8785-b6c434fa534e added to person 00651036-4236-4004-88b9-11466c251548
face 9cdac36e-5455-447b-a68d-eb1f5e2ec27d added to person 23614724-b132-407a-aaa0-67003987ce93
face d8208412-92b7-4b8d-a2f8-3926c839c87e added to person 23614724-b132-407a-aaa0-67003987ce93
Train the person group ad12b2db-d892-48ec-837a-0e7168c18224
The person group ad12b2db-d892-48ec-837a-0e7168c18224 is trained successfully.
Pausing for 60 seconds to avoid triggering rate limit on free account...
Identifying faces in image
Person is identified for face ID bc52405a-5d83-4500-9218-557468ccdf99 in image, with a confidence of 0.96726.
verification result: True. confidence: 0.96726
Person is identified for face ID dfcc3fc8-6252-4f3a-8205-71466f39d1a7 in image, with a confidence of 0.96925.
verification result: True. confidence: 0.96925
No person identified for face ID 401c581b-a178-45ed-8205-7692f6eede88 in image.
Person is identified for face ID 8809d9c7-e362-4727-8c95-e1e44f5c2e8a in image, with a confidence of 0.92898.
verification result: True. confidence: 0.92898
The person group ad12b2db-d892-48ec-837a-0e7168c18224 is deleted.
End of quickstart.
Kaynakları temizleme
Azure AI hizmetleri aboneliğini temizlemek ve kaldırmak istiyorsanız, kaynağı veya kaynak grubunu silebilirsiniz. Kaynak grubunun silinmesi, kaynak grubuyla ilişkili diğer tüm kaynakları da siler.
Sonraki adımlar
Bu hızlı başlangıçta, temel yüz belirlemeyi yapmak için Python için Yüz Tanıma istemci kitaplığını kullanmayı öğrendiniz. Ardından farklı yüz algılama modelleri ve kullanım örneğiniz için doğru modeli belirtme hakkında bilgi edinin.
- Yüz Tanıma hizmeti nedir?
- GitHub'da daha kapsamlı örnek kod bulunabilir.
Java için Yüz Tanıma istemci kitaplığını kullanarak yüz tanımaya başlayın. Paketi yüklemek ve temel görevler için örnek kodu denemek için bu adımları izleyin. Yüz Tanıma hizmeti, görüntülerdeki insan yüzlerini algılamak ve tanımak için gelişmiş algoritmalara erişmenizi sağlar. Paketi yüklemek için bu adımları izleyin ve uzak görüntüleri kullanarak temel yüz tanımaya yönelik örnek kodu deneyin.
Başvuru belgeleri | Kitaplık kaynak kodu | Paketi (Maven)Örnekler |
Önkoşullar
- Azure aboneliği - Ücretsiz olarak oluşturun
- Java Geliştirme Seti'nin (JDK) geçerli sürümü
- Apache Maven yüklendi. Linux'ta varsa dağıtım depolarından yükleyin.
- Azure aboneliğinizi aldıktan sonra anahtarınızı ve uç noktanızı almak için Azure portalında bir Yüz Tanıma kaynağı oluşturun. Dağıtıldıktan sonra Kaynağa git'i seçin.
- Uygulamanızı Yüz Tanıma API'sine bağlamak için oluşturduğunuz kaynaktan anahtara ve uç noktaya ihtiyacınız olacaktır.
- Hizmeti denemek ve daha sonra üretim için ücretli bir katmana yükseltmek için ücretsiz fiyatlandırma katmanını (
F0
) kullanabilirsiniz.
Ortam değişkenlerini oluşturma
Bu örnekte, kimlik bilgilerinizi uygulamayı çalıştıran yerel makinedeki ortam değişkenlerine yazın.
Azure portala gidin. Önkoşullar bölümünde oluşturduğunuz kaynak başarıyla dağıtıldıysa, Sonraki Adımlar'ın altında Kaynağa git'i seçin. Anahtarınızı ve uç noktanızı Anahtarlar ve Uç Nokta sayfasındaki Kaynak Yönetimi'nin altında bulabilirsiniz. Kaynak anahtarınız Azure abonelik kimliğiniz ile aynı değildir.
Anahtarınızın ve uç noktanızın ortam değişkenini ayarlamak için bir konsol penceresi açın ve işletim sisteminiz ve geliştirme ortamınıza yönelik yönergeleri izleyin.
- Ortam değişkenini
FACE_APIKEY
ayarlamak için değerini kaynağınızın anahtarlarından biriyle değiştirin<your_key>
. - Ortam değişkenini
FACE_ENDPOINT
ayarlamak için değerini kaynağınızın uç noktasıyla değiştirin<your_endpoint>
.
Önemli
API anahtarı kullanıyorsanız, bunu Azure Key Vault gibi başka bir yerde güvenli bir şekilde depolayın. API anahtarını doğrudan kodunuzla eklemeyin ve hiçbir zaman herkese açık olarak göndermeyin.
Yapay zeka hizmetleri güvenliği hakkında daha fazla bilgi için bkz . Azure AI hizmetlerine yönelik isteklerin kimliğini doğrulama.
setx FACE_APIKEY <your_key>
setx FACE_ENDPOINT <your_endpoint>
Ortam değişkenlerini ekledikten sonra, konsol penceresi de dahil olmak üzere ortam değişkenlerini okuyacak tüm çalışan programları yeniden başlatmanız gerekebilir.
Yüzleri tanımlama ve doğrulama
İstemci kitaplığını yükleme
Bir konsol penceresi açın ve hızlı başlangıç uygulamanız için yeni bir klasör oluşturun. Aşağıdaki içeriği yeni bir dosyaya kopyalayın. Dosyayı proje dizininizde olduğu gibi
pom.xml
kaydedin:<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.example</groupId> <artifactId>my-application-name</artifactId> <version>1.0.0</version> <dependencies> <!-- https://mvnrepository.com/artifact/com.azure/azure-ai-vision-face --> <dependency> <groupId>com.azure</groupId> <artifactId>azure-ai-vision-face</artifactId> <version>1.0.0-beta.2</version> </dependency> </dependencies> </project>
Proje dizininde aşağıdakileri çalıştırarak SDK'yi ve bağımlılıkları yükleyin:
mvn clean dependency:copy-dependencies
Yeni java uygulaması oluşturma
adlı
Quickstart.java
bir dosya oluşturun, dosyayı bir metin düzenleyicisinde açın ve aşağıdaki kodu yapıştırın:Not
Giriş formunu kullanarak Yüz Tanıma hizmetine erişim almadıysanız, bu işlevlerden bazıları çalışmaz.
import java.util.Arrays; import java.util.LinkedHashMap; import java.util.List; import java.util.Map; import java.util.stream.Collectors; import java.util.UUID; import com.azure.ai.vision.face.FaceClient; import com.azure.ai.vision.face.FaceClientBuilder; import com.azure.ai.vision.face.administration.FaceAdministrationClient; import com.azure.ai.vision.face.administration.FaceAdministrationClientBuilder; import com.azure.ai.vision.face.administration.LargePersonGroupClient; import com.azure.ai.vision.face.models.DetectOptions; import com.azure.ai.vision.face.models.FaceAttributeType; import com.azure.ai.vision.face.models.FaceDetectionModel; import com.azure.ai.vision.face.models.FaceDetectionResult; import com.azure.ai.vision.face.models.FaceIdentificationCandidate; import com.azure.ai.vision.face.models.FaceIdentificationResult; import com.azure.ai.vision.face.models.FaceRecognitionModel; import com.azure.ai.vision.face.models.FaceTrainingResult; import com.azure.ai.vision.face.models.FaceVerificationResult; import com.azure.ai.vision.face.models.QualityForRecognition; import com.azure.core.credential.KeyCredential; import com.azure.core.util.polling.SyncPoller; public class Quickstart { // LARGE_PERSON_GROUP_ID should be all lowercase and alphanumeric. For example, 'mygroupname' (dashes are OK). private static final String LARGE_PERSON_GROUP_ID = UUID.randomUUID().toString(); // URL path for the images. private static final String IMAGE_BASE_URL = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/"; // From your Face subscription in the Azure portal, get your subscription key and endpoint. private static final String SUBSCRIPTION_KEY = System.getenv("FACE_APIKEY"); private static final String ENDPOINT = System.getenv("FACE_ENDPOINT"); public static void main(String[] args) throws Exception { // Recognition model 4 was released in 2021 February. // It is recommended since its accuracy is improved // on faces wearing masks compared with model 3, // and its overall accuracy is improved compared // with models 1 and 2. FaceRecognitionModel RECOGNITION_MODEL4 = FaceRecognitionModel.RECOGNITION_04; // Authenticate. FaceClient client = authenticate(ENDPOINT, SUBSCRIPTION_KEY); // Identify - recognize a face(s) in a large person group (a large person group is created in this example). identifyInLargePersonGroup(client, IMAGE_BASE_URL, RECOGNITION_MODEL4); System.out.println("End of quickstart."); } /* * AUTHENTICATE * Uses subscription key and region to create a client. */ public static FaceClient authenticate(String endpoint, String key) { return new FaceClientBuilder().endpoint(endpoint).credential(new KeyCredential(key)).buildClient(); } // Detect faces from image url for recognition purposes. This is a helper method for other functions in this quickstart. // Parameter `returnFaceId` of `DetectOptions` must be set to `true` (by default) for recognition purposes. // Parameter `returnFaceAttributes` is set to include the QualityForRecognition attribute. // Recognition model must be set to recognition_03 or recognition_04 as a result. // Result faces with insufficient quality for recognition are filtered out. // The field `faceId` in returned `DetectedFace`s will be used in Verify and Identify. // It will expire 24 hours after the detection call. private static List<FaceDetectionResult> detectFaceRecognize(FaceClient faceClient, String url, FaceRecognitionModel recognitionModel) { // Detect faces from image URL. DetectOptions options = new DetectOptions(FaceDetectionModel.DETECTION_03, recognitionModel, true).setReturnFaceAttributes(Arrays.asList(FaceAttributeType.QUALITY_FOR_RECOGNITION)); List<FaceDetectionResult> detectedFaces = faceClient.detect(url, options); List<FaceDetectionResult> sufficientQualityFaces = detectedFaces.stream().filter(f -> f.getFaceAttributes().getQualityForRecognition() != QualityForRecognition.LOW).collect(Collectors.toList()); System.out.println(detectedFaces.size() + " face(s) with " + sufficientQualityFaces.size() + " having sufficient quality for recognition."); return sufficientQualityFaces; } /* * IDENTIFY FACES * To identify faces, you need to create and define a large person group. * The Identify operation takes one or several face IDs from DetectedFace or PersistedFace and a LargePersonGroup and returns * a list of Person objects that each face might belong to. Returned Person objects are wrapped as Candidate objects, * which have a prediction confidence value. */ public static void identifyInLargePersonGroup(FaceClient client, String url, FaceRecognitionModel recognitionModel) throws Exception { System.out.println("========IDENTIFY FACES========"); System.out.println(); // Create a dictionary for all your images, grouping similar ones under the same key. Map<String, String[]> personDictionary = new LinkedHashMap<String, String[]>(); personDictionary.put("Family1-Dad", new String[]{"Family1-Dad1.jpg", "Family1-Dad2.jpg"}); personDictionary.put("Family1-Mom", new String[]{"Family1-Mom1.jpg", "Family1-Mom2.jpg"}); personDictionary.put("Family1-Son", new String[]{"Family1-Son1.jpg", "Family1-Son2.jpg"}); // A group photo that includes some of the persons you seek to identify from your dictionary. String sourceImageFileName = "identification1.jpg"; // Create a large person group. System.out.println("Create a person group (" + LARGE_PERSON_GROUP_ID + ")."); FaceAdministrationClient faceAdministrationClient = new FaceAdministrationClientBuilder().endpoint(ENDPOINT).credential(new KeyCredential(SUBSCRIPTION_KEY)).buildClient(); LargePersonGroupClient largePersonGroupClient = faceAdministrationClient.getLargePersonGroupClient(LARGE_PERSON_GROUP_ID); largePersonGroupClient.create(LARGE_PERSON_GROUP_ID, null, recognitionModel); // The similar faces will be grouped into a single large person group person. for (String groupedFace : personDictionary.keySet()) { // Limit TPS Thread.sleep(250); String personId = largePersonGroupClient.createPerson(groupedFace).getPersonId(); System.out.println("Create a person group person '" + groupedFace + "'."); // Add face to the large person group person. for (String similarImage : personDictionary.get(groupedFace)) { System.out.println("Check whether image is of sufficient quality for recognition"); DetectOptions options = new DetectOptions(FaceDetectionModel.DETECTION_03, recognitionModel, false).setReturnFaceAttributes(Arrays.asList(FaceAttributeType.QUALITY_FOR_RECOGNITION)); List<FaceDetectionResult> facesInImage = client.detect(url + similarImage, options); if (facesInImage.stream().anyMatch(f -> f.getFaceAttributes().getQualityForRecognition() != QualityForRecognition.HIGH)) { continue; } if (facesInImage.size() != 1) { continue; } // add face to the large person group System.out.println("Add face to the person group person(" + groupedFace + ") from image `" + similarImage + "`"); largePersonGroupClient.addFace(personId, url + similarImage, null, FaceDetectionModel.DETECTION_03, null); } } // Start to train the large person group. System.out.println(); System.out.println("Train person group " + LARGE_PERSON_GROUP_ID + "."); SyncPoller<FaceTrainingResult, Void> poller = largePersonGroupClient.beginTrain(); // Wait until the training is completed. poller.waitForCompletion(); System.out.println("Training status: succeeded."); System.out.println(); System.out.println("Pausing for 60 seconds to avoid triggering rate limit on free account..."); Thread.sleep(60000); // Detect faces from source image url. List<FaceDetectionResult> detectedFaces = detectFaceRecognize(client, url + sourceImageFileName, recognitionModel); // Add detected faceId to sourceFaceIds. List<String> sourceFaceIds = detectedFaces.stream().map(FaceDetectionResult::getFaceId).collect(Collectors.toList()); // Identify the faces in a large person group. List<FaceIdentificationResult> identifyResults = client.identifyFromLargePersonGroup(sourceFaceIds, LARGE_PERSON_GROUP_ID); for (FaceIdentificationResult identifyResult : identifyResults) { if (identifyResult.getCandidates().isEmpty()) { System.out.println("No person is identified for the face in: " + sourceImageFileName + " - " + identifyResult.getFaceId() + "."); continue; } FaceIdentificationCandidate candidate = identifyResult.getCandidates().stream().findFirst().orElseThrow(); String personName = largePersonGroupClient.getPerson(candidate.getPersonId()).getName(); System.out.println("Person '" + personName + "' is identified for the face in: " + sourceImageFileName + " - " + identifyResult.getFaceId() + ", confidence: " + candidate.getConfidence() + "."); FaceVerificationResult verifyResult = client.verifyFromLargePersonGroup(identifyResult.getFaceId(), LARGE_PERSON_GROUP_ID, candidate.getPersonId()); System.out.println("Verification result: is a match? " + verifyResult.isIdentical() + ". confidence: " + verifyResult.getConfidence()); } System.out.println(); // Delete large person group. System.out.println("========DELETE PERSON GROUP========"); System.out.println(); largePersonGroupClient.delete(); System.out.println("Deleted the person group " + LARGE_PERSON_GROUP_ID + "."); System.out.println(); } }
ve
java
komutları ilejavac
yüz tanıma uygulamanızı uygulama dizininden çalıştırın.
Çıktı
========IDENTIFY FACES========
Create a person group (3761e61a-16b2-4503-ad29-ed34c58ba676).
Create a person group person 'Family1-Dad'.
Check whether image is of sufficient quality for recognition
Add face to the person group person(Family1-Dad) from image `Family1-Dad1.jpg`
Check whether image is of sufficient quality for recognition
Add face to the person group person(Family1-Dad) from image `Family1-Dad2.jpg`
Create a person group person 'Family1-Mom'.
Check whether image is of sufficient quality for recognition
Add face to the person group person(Family1-Mom) from image `Family1-Mom1.jpg`
Check whether image is of sufficient quality for recognition
Add face to the person group person(Family1-Mom) from image `Family1-Mom2.jpg`
Create a person group person 'Family1-Son'.
Check whether image is of sufficient quality for recognition
Add face to the person group person(Family1-Son) from image `Family1-Son1.jpg`
Check whether image is of sufficient quality for recognition
Add face to the person group person(Family1-Son) from image `Family1-Son2.jpg`
Train person group 3761e61a-16b2-4503-ad29-ed34c58ba676.
Training status: succeeded.
Pausing for 60 seconds to avoid triggering rate limit on free account...
4 face(s) with 4 having sufficient quality for recognition.
Person 'Family1-Dad' is identified for the face in: identification1.jpg - d7995b34-1b72-47fe-82b6-e9877ed2578d, confidence: 0.96807.
Verification result: is a match? true. confidence: 0.96807
Person 'Family1-Mom' is identified for the face in: identification1.jpg - 844da0ed-4890-4bbf-a531-e638797f96fc, confidence: 0.96902.
Verification result: is a match? true. confidence: 0.96902
No person is identified for the face in: identification1.jpg - c543159a-57f3-4872-83ce-2d4a733d71c9.
Person 'Family1-Son' is identified for the face in: identification1.jpg - 414fac6c-7381-4dba-9c8b-fd26d52e879b, confidence: 0.9281.
Verification result: is a match? true. confidence: 0.9281
========DELETE PERSON GROUP========
Deleted the person group 3761e61a-16b2-4503-ad29-ed34c58ba676.
End of quickstart.
Kaynakları temizleme
Azure AI hizmetleri aboneliğini temizlemek ve kaldırmak istiyorsanız, kaynağı veya kaynak grubunu silebilirsiniz. Kaynak grubunun silinmesi, kaynak grubuyla ilişkili diğer tüm kaynakları da siler.
Sonraki adımlar
Bu hızlı başlangıçta, temel yüz belirlemeyi yapmak için Java için Yüz Tanıma istemci kitaplığını kullanmayı öğrendiniz. Ardından farklı yüz algılama modelleri ve kullanım örneğiniz için doğru modeli belirtme hakkında bilgi edinin.
- Yüz Tanıma hizmeti nedir?
- GitHub'da daha kapsamlı örnek kod bulunabilir.
JavaScript için Yüz Tanıma istemci kitaplığını kullanarak yüz tanımayı kullanmaya başlayın. Paketi yüklemek ve temel görevler için örnek kodu denemek için bu adımları izleyin. Yüz Tanıma hizmeti, görüntülerdeki insan yüzlerini algılamak ve tanımak için gelişmiş algoritmalara erişmenizi sağlar. Paketi yüklemek için bu adımları izleyin ve uzak görüntüleri kullanarak temel yüz tanımaya yönelik örnek kodu deneyin.
Başvuru belgeleri | Kitaplık kaynak kodu | Paketi (npm)Örnekler |
Önkoşullar
- Azure aboneliği - Ücretsiz olarak oluşturun
- Node.js'nin en son sürümü
- Azure aboneliğinizi aldıktan sonra anahtarınızı ve uç noktanızı almak için Azure portalında Yüz Tanıma kaynağı oluşturun. Dağıtıldıktan sonra Kaynağa git'i seçin.
- Uygulamanızı Yüz Tanıma API'sine bağlamak için oluşturduğunuz kaynaktan anahtara ve uç noktaya ihtiyacınız olacaktır.
- Hizmeti denemek ve daha sonra üretim için ücretli bir katmana yükseltmek için ücretsiz fiyatlandırma katmanını (
F0
) kullanabilirsiniz.
Ortam değişkenlerini oluşturma
Bu örnekte, kimlik bilgilerinizi uygulamayı çalıştıran yerel makinedeki ortam değişkenlerine yazın.
Azure portala gidin. Önkoşullar bölümünde oluşturduğunuz kaynak başarıyla dağıtıldıysa, Sonraki Adımlar'ın altında Kaynağa git'i seçin. Anahtarınızı ve uç noktanızı Anahtarlar ve Uç Nokta sayfasındaki Kaynak Yönetimi'nin altında bulabilirsiniz. Kaynak anahtarınız Azure abonelik kimliğiniz ile aynı değildir.
Anahtarınızın ve uç noktanızın ortam değişkenini ayarlamak için bir konsol penceresi açın ve işletim sisteminiz ve geliştirme ortamınıza yönelik yönergeleri izleyin.
- Ortam değişkenini
FACE_APIKEY
ayarlamak için değerini kaynağınızın anahtarlarından biriyle değiştirin<your_key>
. - Ortam değişkenini
FACE_ENDPOINT
ayarlamak için değerini kaynağınızın uç noktasıyla değiştirin<your_endpoint>
.
Önemli
API anahtarı kullanıyorsanız, bunu Azure Key Vault gibi başka bir yerde güvenli bir şekilde depolayın. API anahtarını doğrudan kodunuzla eklemeyin ve hiçbir zaman herkese açık olarak göndermeyin.
Yapay zeka hizmetleri güvenliği hakkında daha fazla bilgi için bkz . Azure AI hizmetlerine yönelik isteklerin kimliğini doğrulama.
setx FACE_APIKEY <your_key>
setx FACE_ENDPOINT <your_endpoint>
Ortam değişkenlerini ekledikten sonra, konsol penceresi de dahil olmak üzere ortam değişkenlerini okuyacak tüm çalışan programları yeniden başlatmanız gerekebilir.
Yüzleri tanımlama ve doğrulama
Yeni bir Node.js uygulaması oluşturma
Konsol penceresinde (cmd, PowerShell veya Bash gibi), uygulamanız için yeni bir dizin oluşturun ve bu dizine gidin.
mkdir myapp && cd myapp
Bir
package.json
dosyası ile bir düğüm uygulaması oluşturmak içinnpm init
komutunu çalıştırın.npm init
@azure-rest/ai-vision-face
npm paketlerini yükleyin:npm install @azure-rest/ai-vision-face
Uygulamanızın
package.json
dosyası bağımlılıklarla güncelleştirilir.adlı
index.js
bir dosya oluşturun, dosyayı bir metin düzenleyicisinde açın ve aşağıdaki kodu yapıştırın:Not
Giriş formunu kullanarak Yüz Tanıma hizmetine erişim almadıysanız, bu işlevlerden bazıları çalışmaz.
const { randomUUID } = require("crypto"); const { AzureKeyCredential } = require("@azure/core-auth"); const createFaceClient = require("@azure-rest/ai-vision-face").default, { getLongRunningPoller } = require("@azure-rest/ai-vision-face"); const sleep = (ms) => new Promise((resolve) => setTimeout(resolve, ms)); const main = async () => { const endpoint = process.env["FACE_ENDPOINT"] ?? "<endpoint>"; const apikey = process.env["FACE_APIKEY"] ?? "<apikey>"; const credential = new AzureKeyCredential(apikey); const client = createFaceClient(endpoint, credential); const imageBaseUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/"; const largePersonGroupId = randomUUID(); console.log("========IDENTIFY FACES========"); console.log(); // Create a dictionary for all your images, grouping similar ones under the same key. const personDictionary = { "Family1-Dad": ["Family1-Dad1.jpg", "Family1-Dad2.jpg"], "Family1-Mom": ["Family1-Mom1.jpg", "Family1-Mom2.jpg"], "Family1-Son": ["Family1-Son1.jpg", "Family1-Son2.jpg"], }; // A group photo that includes some of the persons you seek to identify from your dictionary. const sourceImageFileName = "identification1.jpg"; // Create a large person group. console.log(`Creating a person group with ID: ${largePersonGroupId}`); await client.path("/largepersongroups/{largePersonGroupId}", largePersonGroupId).put({ body: { name: largePersonGroupId, recognitionModel: "recognition_04", }, }); // The similar faces will be grouped into a single large person group person. console.log("Adding faces to person group..."); await Promise.all( Object.keys(personDictionary).map(async (name) => { console.log(`Create a persongroup person: ${name}`); const createLargePersonGroupPersonResponse = await client .path("/largepersongroups/{largePersonGroupId}/persons", largePersonGroupId) .post({ body: { name }, }); const { personId } = createLargePersonGroupPersonResponse.body; await Promise.all( personDictionary[name].map(async (similarImage) => { // Check if the image is of sufficent quality for recognition. const detectResponse = await client.path("/detect").post({ contentType: "application/json", queryParameters: { detectionModel: "detection_03", recognitionModel: "recognition_04", returnFaceId: false, returnFaceAttributes: ["qualityForRecognition"], }, body: { url: `${imageBaseUrl}${similarImage}` }, }); const sufficientQuality = detectResponse.body.every( (face) => face.faceAttributes?.qualityForRecognition === "high", ); if (!sufficientQuality) { return; } if (detectResponse.body.length != 1) { return; } // Quality is sufficent, add to group. console.log( `Add face to the person group person: (${name}) from image: (${similarImage})`, ); await client .path( "/largepersongroups/{largePersonGroupId}/persons/{personId}/persistedfaces", largePersonGroupId, personId, ) .post({ queryParameters: { detectionModel: "detection_03" }, body: { url: `${imageBaseUrl}${similarImage}` }, }); }), ); }), ); console.log("Done adding faces to person group."); // Start to train the large person group. console.log(); console.log(`Training person group: ${largePersonGroupId}`); const trainResponse = await client .path("/largepersongroups/{largePersonGroupId}/train", largePersonGroupId) .post(); const poller = await getLongRunningPoller(client, trainResponse); await poller.pollUntilDone(); console.log(`Training status: ${poller.getOperationState().status}`); if (poller.getOperationState().status !== "succeeded") { return; } console.log("Pausing for 60 seconds to avoid triggering rate limit on free account..."); await sleep(60000); // Detect faces from source image url and only take those with sufficient quality for recognition. const detectResponse = await client.path("/detect").post({ contentType: "application/json", queryParameters: { detectionModel: "detection_03", recognitionModel: "recognition_04", returnFaceId: true, returnFaceAttributes: ["qualityForRecognition"], }, body: { url: `${imageBaseUrl}${sourceImageFileName}` }, }); const faceIds = detectResponse.body.filter((face) => face.faceAttributes?.qualityForRecognition !== "low").map((face) => face.faceId); // Identify the faces in a large person group. const identifyResponse = await client.path("/identify").post({ body: { faceIds, largePersonGroupId: largePersonGroupId }, }); await Promise.all( identifyResponse.body.map(async (result) => { try { const getLargePersonGroupPersonResponse = await client .path( "/largepersongroups/{largePersonGroupId}/persons/{personId}", largePersonGroupId, result.candidates[0].personId, ) .get(); const person = getLargePersonGroupPersonResponse.body; console.log( `Person: ${person.name} is identified for face in: ${sourceImageFileName} with ID: ${result.faceId}. Confidence: ${result.candidates[0].confidence}`, ); // Verification: const verifyResponse = await client.path("/verify").post({ body: { faceId: result.faceId, largePersonGroupId: largePersonGroupId, personId: person.personId, }, }); console.log( `Verification result between face ${result.faceId} and person ${person.personId}: ${verifyResponse.body.isIdentical} with confidence: ${verifyResponse.body.confidence}`, ); } catch (error) { console.log(`No persons identified for face with ID ${result.faceId}`); } }), ); console.log(); // Delete large person group. console.log(`Deleting person group: ${largePersonGroupId}`); await client.path("/largepersongroups/{largePersonGroupId}", largePersonGroupId).delete(); console.log(); console.log("Done."); }; main().catch(console.error);
Uygulamayı hızlı başlangıç dosyanızdaki
node
komutuyla çalıştırın.node index.js
Çıktı
========IDENTIFY FACES========
Creating a person group with ID: a230ac8b-09b2-4fa0-ae04-d76356d88d9f
Adding faces to person group...
Create a persongroup person: Family1-Dad
Create a persongroup person: Family1-Mom
Create a persongroup person: Family1-Son
Add face to the person group person: (Family1-Dad) from image: (Family1-Dad1.jpg)
Add face to the person group person: (Family1-Mom) from image: (Family1-Mom1.jpg)
Add face to the person group person: (Family1-Son) from image: (Family1-Son1.jpg)
Add face to the person group person: (Family1-Dad) from image: (Family1-Dad2.jpg)
Add face to the person group person: (Family1-Mom) from image: (Family1-Mom2.jpg)
Add face to the person group person: (Family1-Son) from image: (Family1-Son2.jpg)
Done adding faces to person group.
Training person group: a230ac8b-09b2-4fa0-ae04-d76356d88d9f
Training status: succeeded
Pausing for 60 seconds to avoid triggering rate limit on free account...
No persons identified for face with ID 56380623-8bf0-414a-b9d9-c2373386b7be
Person: Family1-Dad is identified for face in: identification1.jpg with ID: c45052eb-a910-4fd3-b1c3-f91ccccc316a. Confidence: 0.96807
Person: Family1-Son is identified for face in: identification1.jpg with ID: 8dce9b50-513f-4fe2-9e19-352acfd622b3. Confidence: 0.9281
Person: Family1-Mom is identified for face in: identification1.jpg with ID: 75868da3-66f6-4b5f-a172-0b619f4d74c1. Confidence: 0.96902
Verification result between face c45052eb-a910-4fd3-b1c3-f91ccccc316a and person 35a58d14-fd58-4146-9669-82ed664da357: true with confidence: 0.96807
Verification result between face 8dce9b50-513f-4fe2-9e19-352acfd622b3 and person 2d4d196c-5349-431c-bf0c-f1d7aaa180ba: true with confidence: 0.9281
Verification result between face 75868da3-66f6-4b5f-a172-0b619f4d74c1 and person 35d5de9e-5f92-4552-8907-0d0aac889c3e: true with confidence: 0.96902
Deleting person group: a230ac8b-09b2-4fa0-ae04-d76356d88d9f
Done.
Kaynakları temizleme
Azure AI hizmetleri aboneliğini temizlemek ve kaldırmak istiyorsanız, kaynağı veya kaynak grubunu silebilirsiniz. Kaynak grubunun silinmesi, kaynak grubuyla ilişkili diğer tüm kaynakları da siler.
Sonraki adımlar
Bu hızlı başlangıçta, temel yüz belirlemeyi yapmak için JavaScript için Yüz Tanıma istemci kitaplığını kullanmayı öğrendiniz. Ardından farklı yüz algılama modelleri ve kullanım örneğiniz için doğru modeli belirtme hakkında bilgi edinin.
- Yüz Tanıma hizmeti nedir?
- GitHub'da daha kapsamlı örnek kod bulunabilir.
Yüz Tanıma REST API'sini kullanarak yüz tanımayı kullanmaya başlayın. Yüz Tanıma hizmeti, görüntülerdeki insan yüzlerini algılamak ve tanımak için gelişmiş algoritmalara erişmenizi sağlar.
Not
Bu hızlı başlangıçta REST API'yi çağırmak için cURL komutları kullanılır. Rest API'yi bir programlama dili kullanarak da çağırabilirsiniz. Yüz belirleme gibi karmaşık senaryoların dil SDK'sı kullanılarak uygulanması daha kolaydır. C#, Python, Java, JavaScript ve Go örnekleri için GitHub örneklerine bakın.
Önkoşullar
- Azure aboneliği - Ücretsiz olarak oluşturun
- Azure aboneliğinizi aldıktan sonra anahtarınızı ve uç noktanızı almak için Azure portalında bir Yüz Tanıma kaynağı oluşturun. Dağıtıldıktan sonra Kaynağa git'i seçin.
- Uygulamanızı Yüz Tanıma API'sine bağlamak için oluşturduğunuz kaynaktan anahtara ve uç noktaya ihtiyacınız olacaktır. Anahtarınızı ve uç noktanızı hızlı başlangıcın ilerleyen bölümlerinde aşağıdaki koda yapıştıracaksınız.
- Hizmeti denemek ve daha sonra üretim için ücretli bir katmana yükseltmek için ücretsiz fiyatlandırma katmanını (
F0
) kullanabilirsiniz.
- PowerShell sürüm 6.0+ veya benzer bir komut satırı uygulaması.
- cURL yüklü.
Yüzleri tanımlama ve doğrulama
Not
Giriş formunu kullanarak Yüz Tanıma hizmetine erişim almadıysanız, bu işlevlerden bazıları çalışmaz.
İlk olarak, kaynak yüzde Detect API'sini çağırın. Bu, büyük gruptan tanımlamaya çalışacağımız yüzdür. Aşağıdaki komutu bir metin düzenleyicisine kopyalayın, kendi anahtarınızı ve uç noktanızı ekleyin ve ardından bir kabuk penceresine kopyalayıp çalıştırın.
curl.exe -v -X POST "https://{resource endpoint}/face/v1.0/detect?returnFaceId=true&returnFaceLandmarks=false&recognitionModel=recognition_04&returnRecognitionModel=false&detectionModel=detection_03&faceIdTimeToLive=86400" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: {subscription key}" --data-ascii "{""url"":""https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/identification1.jpg""}"
Döndürülen yüz kimliği dizesini geçici bir konuma kaydedin. Sonunda tekrar kullanacaksınız.
Ardından bir LargePersonGroup oluşturmanız ve regex deseni
^[a-z0-9-_]+$
ile eşleşen rastgele bir kimlik vermeniz gerekir. Bu nesne, birkaç kişinin toplu yüz verilerini depolar. Kendi anahtarınızı ekleyerek aşağıdaki komutu çalıştırın. İsteğe bağlı olarak, istek gövdesinde grubun adını ve meta verilerini değiştirin.curl.exe -v -X PUT "https://{resource endpoint}/face/v1.0/largepersongroups/{largePersonGroupId}" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: {subscription key}" --data-ascii "{ ""name"": ""large-person-group-name"", ""userData"": ""User-provided data attached to the large person group."", ""recognitionModel"": ""recognition_04"" }"
Oluşturulan grubun belirtilen kimliğini geçici bir konuma kaydedin.
Ardından, gruba ait Kişi nesneleri oluşturacaksınız. Önceki adımda kendi anahtarınızı ve LargePersonGroup kimliğini ekleyerek aşağıdaki komutu çalıştırın. Bu komut "Family1-Dad" adlı bir Kişi oluşturur.
curl.exe -v -X POST "https://{resource endpoint}/face/v1.0/largepersongroups/{largePersonGroupId}/persons" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: {subscription key}" --data-ascii "{ ""name"": ""Family1-Dad"", ""userData"": ""User-provided data attached to the person."" }"
Bu komutu çalıştırdıktan sonra, daha fazla Kişi nesnesi oluşturmak için farklı giriş verileriyle yeniden çalıştırın: "Family1-Mom", "Family1-Son", "Family1-Daughter", "Family2-Lady" ve "Family2-Man".
Oluşturulan her Kişinin kimliklerini kaydedin; hangi kişi adının hangi kimliğe sahip olduğunu izlemek önemlidir.
Ardından yeni yüzleri algılamanız ve bunları var olan Kişi nesneleriyle ilişkilendirmeniz gerekir. Aşağıdaki komut, görüntü Family1-Dad1.jpg bir yüzü algılar ve ilgili kişiye ekler. "Family1-Dad" Person nesnesini oluştururken döndürülen kimlik olarak değerini belirtmeniz
personId
gerekir. Resim adı, oluşturulan Kişinin adına karşılık gelir. Ayrıca uygun alanlara LargePersonGroup Kimliğini ve anahtarınızı girin.curl.exe -v -X POST "https://{resource endpoint}/face/v1.0/largepersongroups/{largePersonGroupId}/persons/{personId}/persistedfaces?detectionModel=detection_03" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: {subscription key}" --data-ascii "{""url"":""https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/Family1-Dad1.jpg""}"
Ardından, yukarıdaki komutu farklı bir kaynak görüntüyle yeniden çalıştırın ve Kişi'yi hedefleyin. Kullanılabilir görüntüler şunlardır: Family1-Dad1.jpg, Family1-Dad2.jpg Family1-Mom1.jpg, Family1-Mom2.jpg, Family1-Son1.jpg, Family1-Son2.jpg, Family1-Daughter1.jpg, Family1-Daughter2.jpg, Family2-Lady1.jpg, Family2-Lady2.jpg, Family2-Man1.jpg ve Family2-Man2.jpg. API çağrısında kimliğini belirttiğiniz Kişinin , istek gövdesindeki görüntü dosyasının adıyla eşleştiğinden emin olun.
Bu adımın sonunda, her birinin doğrudan sağlanan görüntülerden algılanan bir veya daha fazla karşılık gelen yüzü olan birden çok Kişi nesnesine sahip olmanız gerekir.
Ardından LargePersonGroup'ı geçerli yüz verileriyle eğitin. Eğitim işlemi modele, bazen birden çok kaynak görüntüden toplanan yüz özelliklerini tek tek her bir kişiyle ilişkilendirmeyi öğretir. Komutu çalıştırmadan önce LargePersonGroup Kimliğini ve anahtarınızı ekleyin.
Eğitim durumunun başarılı olup olmadığını denetleyin. Değilse, bir süre bekleyin ve yeniden sorgu edin.
Şimdi ilk adımdaki kaynak yüz kimliğini ve LargePersonGroup Kimliğini kullanarak Tanımlama API'sini çağırmaya hazırsınız. Bu değerleri istek gövdesindeki uygun alanlara ekleyin ve anahtarınızı ekleyin.
curl.exe -v -X POST "https://{resource endpoint}/face/v1.0/identify" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: {subscription key}" --data-ascii "{ ""largePersonGroupId"": ""INSERT_PERSONGROUP_ID"", ""faceIds"": [ ""INSERT_SOURCE_FACE_ID"" ], ""maxNumOfCandidatesReturned"": 1, ""confidenceThreshold"": 0.5 }"
Yanıt size kaynak yüzle tanımlanan kişiyi belirten bir Kişi Kimliği vermelidir. Bu, "Aile1-Baba" kişisine karşılık gelen kimlik olmalıdır, çünkü kaynak yüz o kişinin yüzüdür.
Yüz doğrulama yapmak için, önceki adımda döndürülen Kişi Kimliğini, LargePersonGroup Kimliğini ve ayrıca kaynak yüz kimliğini kullanacaksınız. Bu değerleri istek gövdesindeki alanlara ekleyin ve anahtarınızı ekleyin.
curl.exe -v -X POST "https://{resource endpoint}/face/v1.0/verify" ` -H "Content-Type: application/json" ` -H "Ocp-Apim-Subscription-Key: {subscription key}" ` --data-ascii "{ ""faceId"": ""INSERT_SOURCE_FACE_ID"", ""personId"": ""INSERT_PERSON_ID"", ""largePersonGroupId"": ""INSERT_PERSONGROUP_ID"" }"
Yanıt size bir boole doğrulama sonucu ve güvenilirlik değeri vermelidir.
Kaynakları temizleme
Bu alıştırmada oluşturduğunuz LargePersonGroup'u silmek için LargePersonGroup - Delete çağrısını çalıştırın.
curl.exe -v -X DELETE "https://{resource endpoint}/face/v1.0/largepersongroups/{largePersonGroupId}" -H "Ocp-Apim-Subscription-Key: {subscription key}"
Azure AI hizmetleri aboneliğini temizlemek ve kaldırmak istiyorsanız, kaynağı veya kaynak grubunu silebilirsiniz. Kaynak grubunun silinmesi, kaynak grubuyla ilişkili diğer tüm kaynakları da siler.
Sonraki adımlar
Bu hızlı başlangıçta Yüz Tanıma REST API'sini kullanarak temel yüz tanıma görevlerini gerçekleştirmeyi öğrendiniz. Ardından farklı yüz algılama modelleri ve kullanım örneğiniz için doğru modeli belirtme hakkında bilgi edinin.