Hızlı Başlangıç: Görüntü Analizi 4.0
Temel bir görüntü analizi uygulaması ayarlamak için Görüntü Analizi 4.0 REST API'sini veya istemci SDK'sını kullanmaya başlayın. Görüntü Analizi hizmeti, görüntüleri işlemek ve görsel özellikleri hakkında bilgi döndürmek için size yapay zeka algoritmaları sağlar. Uygulamanıza paket yüklemek ve örnek kodu denemek için bu adımları izleyin.
Bir görüntüdeki metni okumak ve resim yazısı oluşturmak için .NET için Görüntü Analizi istemci SDK'sını kullanın. Bu hızlı başlangıç, uzak görüntüyü analiz eder ve sonuçları konsola yazdırır.
Başvuru belgeleri | Paketi (NuGet) | Örnekleri
İpucu
Analysis 4.0 API'sinde birçok farklı işlem yapılabilir. Tüm kullanılabilir özellikleri gösteren örnekler için Görüntüyü Analiz Etme nasıl yapılır kılavuzuna bakın.
Önkoşullar
- Azure aboneliği - Ücretsiz bir abonelik oluşturun
- İş yükü .NET masaüstü geliştirmesi etkinleştirilmiş Visual Studio IDE. Veya Visual Studio IDE kullanmayı planlamıyorsanız .NET SDK'sının yüklü olması gerekir.
- Azure aboneliğinizi aldıktan sonra Azure portalında bir Görüntü İşleme kaynağı oluşturun. Bu hızlı başlangıçtaki açıklamalı alt yazı özelliğini kullanmak için kaynağınızı desteklenen Azure bölgelerinden birinde oluşturmanız gerekir (bkz . Resim yazıları). Dağıtıldıktan sonra Kaynağa git'i seçin.
- Uygulamanızı Azure AI Vision hizmetine bağlamak için oluşturduğunuz kaynaktan anahtara ve uç noktaya ihtiyacınız vardır.
- Hizmeti denemek ve daha sonra üretim için ücretli bir katmana yükseltmek için ücretsiz fiyatlandırma katmanını (
F0
) kullanabilirsiniz.
Uygulamayı ayarlama
Yeni bir C# uygulaması oluşturun.
Visual Studio'yu açın ve Başlarken'in altında Yeni proje oluştur'u seçin. Şablon filtrelerini C#/Tüm Platformlar/Konsol olarak ayarlayın. Konsol Uygulaması'nı (Windows, Linux ve macOS üzerinde .NET üzerinde çalıştırabilen komut satırı uygulaması) ve İleri'yi seçin. Proje adını ImageAnalysisQuickstart olarak güncelleştirin ve İleri'yi seçin. Projeyi oluşturmak için .NET 6.0 veya üzerini seçin ve Oluştur'u seçin.
İstemci SDK'sını yükleme
Yeni bir proje oluşturduktan sonra, Çözüm Gezgini proje çözümüne sağ tıklayıp NuGet Paketlerini Yönet'i seçerek istemci SDK'sını yükleyin. Açılan paket yöneticisinde Gözat’ı seçip Ön sürümü dahil et seçeneğini işaretleyin ve Azure.AI.Vision.ImageAnalysis
için arama yapın. Yükle'yi seçin.
Ortam değişkenlerini oluşturma
Bu örnekte, kimlik bilgilerinizi uygulamayı çalıştıran yerel makinedeki ortam değişkenlerine yazın.
Azure portala gidin. Önkoşullar bölümünde oluşturduğunuz kaynak başarıyla dağıtıldıysa, Sonraki Adımlar'ın altında Kaynağa git'i seçin. Anahtarınızı ve uç noktanızı Anahtarlar ve Uç Nokta sayfasındaki Kaynak Yönetimi'nin altında bulabilirsiniz. Kaynak anahtarınız Azure abonelik kimliğiniz ile aynı değildir.
Anahtarınızın ve uç noktanızın ortam değişkenini ayarlamak için bir konsol penceresi açın ve işletim sisteminiz ve geliştirme ortamınıza yönelik yönergeleri izleyin.
- Ortam değişkenini
VISION_KEY
ayarlamak için değerini kaynağınızın anahtarlarından biriyle değiştirin<your_key>
. - Ortam değişkenini
VISION_ENDPOINT
ayarlamak için değerini kaynağınızın uç noktasıyla değiştirin<your_endpoint>
.
Önemli
API anahtarı kullanıyorsanız, bunu Azure Key Vault gibi başka bir yerde güvenli bir şekilde depolayın. API anahtarını doğrudan kodunuzla eklemeyin ve hiçbir zaman herkese açık olarak göndermeyin.
Yapay zeka hizmetleri güvenliği hakkında daha fazla bilgi için bkz . Azure AI hizmetlerine yönelik isteklerin kimliğini doğrulama.
setx VISION_KEY <your_key>
setx VISION_ENDPOINT <your_endpoint>
Ortam değişkenlerini ekledikten sonra, konsol penceresi de dahil olmak üzere ortam değişkenlerini okuyacak tüm çalışan programları yeniden başlatmanız gerekebilir.
Görüntüyü Analiz Et
Proje dizininden, daha önce yeni projenizle oluşturulan Program.cs dosyasını açın. Aşağıdaki kodu yapıştırın:
İpucu
Kod, görüntü URL'sini analiz etme işlemini gösterir. Ayrıca yerel görüntü dosyasını veya bellek arabelleğindeki bir görüntüyü analiz edebilirsiniz. Daha fazla bilgi için Görüntüyü Analiz Etme nasıl yapılır kılavuzuna bakın.
using Azure;
using Azure.AI.Vision.ImageAnalysis;
using System;
public class Program
{
static void AnalyzeImage()
{
string endpoint = Environment.GetEnvironmentVariable("VISION_ENDPOINT");
string key = Environment.GetEnvironmentVariable("VISION_KEY");
ImageAnalysisClient client = new ImageAnalysisClient(
new Uri(endpoint),
new AzureKeyCredential(key));
ImageAnalysisResult result = client.Analyze(
new Uri("https://zcusa.951200.xyz/azure/ai-services/computer-vision/media/quickstarts/presentation.png"),
VisualFeatures.Caption | VisualFeatures.Read,
new ImageAnalysisOptions { GenderNeutralCaption = true });
Console.WriteLine("Image analysis results:");
Console.WriteLine(" Caption:");
Console.WriteLine($" '{result.Caption.Text}', Confidence {result.Caption.Confidence:F4}");
Console.WriteLine(" Read:");
foreach (DetectedTextBlock block in result.Read.Blocks)
foreach (DetectedTextLine line in block.Lines)
{
Console.WriteLine($" Line: '{line.Text}', Bounding Polygon: [{string.Join(" ", line.BoundingPolygon)}]");
foreach (DetectedTextWord word in line.Words)
{
Console.WriteLine($" Word: '{word.Text}', Confidence {word.Confidence.ToString("#.####")}, Bounding Polygon: [{string.Join(" ", word.BoundingPolygon)}]");
}
}
}
static void Main()
{
try
{
AnalyzeImage();
}
catch (Exception e)
{
Console.WriteLine(e);
}
}
}
IDE penceresinin üst kısmındaki Hata Ayıkla menüsünden Hata Ayıklamayı Başlat'ı seçerek uygulamayı derleyin ve çalıştırın (veya F5 tuşuna basın).
Çıktı
Konsol çıktısı aşağıdaki metne benzer bir şey göstermelidir:
Caption:
"a person pointing at a screen", Confidence 0.4892
Text:
Line: '9:35 AM', Bounding polygon {{X=130,Y=129},{X=215,Y=130},{X=215,Y=149},{X=130,Y=148}}
Word: '9:35', Bounding polygon {{X=131,Y=130},{X=171,Y=130},{X=171,Y=149},{X=130,Y=149}}, Confidence 0.9930
Word: 'AM', Bounding polygon {{X=179,Y=130},{X=204,Y=130},{X=203,Y=149},{X=178,Y=149}}, Confidence 0.9980
Line: 'E Conference room 154584354', Bounding polygon {{X=130,Y=153},{X=224,Y=154},{X=224,Y=161},{X=130,Y=161}}
Word: 'E', Bounding polygon {{X=131,Y=154},{X=135,Y=154},{X=135,Y=161},{X=131,Y=161}}, Confidence 0.1040
Word: 'Conference', Bounding polygon {{X=142,Y=154},{X=174,Y=154},{X=173,Y=161},{X=141,Y=161}}, Confidence 0.9020
Word: 'room', Bounding polygon {{X=175,Y=154},{X=189,Y=155},{X=188,Y=161},{X=175,Y=161}}, Confidence 0.7960
Word: '154584354', Bounding polygon {{X=192,Y=155},{X=224,Y=154},{X=223,Y=162},{X=191,Y=161}}, Confidence 0.8640
Line: '#: 555-173-4547', Bounding polygon {{X=130,Y=163},{X=182,Y=164},{X=181,Y=171},{X=130,Y=170}}
Word: '#:', Bounding polygon {{X=131,Y=163},{X=139,Y=164},{X=139,Y=171},{X=131,Y=171}}, Confidence 0.0360
Word: '555-173-4547', Bounding polygon {{X=142,Y=164},{X=182,Y=165},{X=181,Y=171},{X=142,Y=171}}, Confidence 0.5970
Line: 'Town Hall', Bounding polygon {{X=546,Y=180},{X=590,Y=180},{X=590,Y=190},{X=546,Y=190}}
Word: 'Town', Bounding polygon {{X=547,Y=181},{X=568,Y=181},{X=568,Y=190},{X=546,Y=191}}, Confidence 0.9810
Word: 'Hall', Bounding polygon {{X=570,Y=181},{X=590,Y=181},{X=590,Y=191},{X=570,Y=190}}, Confidence 0.9910
Line: '9:00 AM - 10:00 AM', Bounding polygon {{X=546,Y=191},{X=596,Y=192},{X=596,Y=200},{X=546,Y=199}}
Word: '9:00', Bounding polygon {{X=546,Y=192},{X=555,Y=192},{X=555,Y=200},{X=546,Y=200}}, Confidence 0.0900
Word: 'AM', Bounding polygon {{X=557,Y=192},{X=565,Y=192},{X=565,Y=200},{X=557,Y=200}}, Confidence 0.9910
Word: '-', Bounding polygon {{X=567,Y=192},{X=569,Y=192},{X=569,Y=200},{X=567,Y=200}}, Confidence 0.6910
Word: '10:00', Bounding polygon {{X=570,Y=192},{X=585,Y=193},{X=584,Y=200},{X=570,Y=200}}, Confidence 0.8850
Word: 'AM', Bounding polygon {{X=586,Y=193},{X=593,Y=194},{X=593,Y=200},{X=586,Y=200}}, Confidence 0.9910
Line: 'Aaron Buaion', Bounding polygon {{X=543,Y=201},{X=581,Y=201},{X=581,Y=208},{X=543,Y=208}}
Word: 'Aaron', Bounding polygon {{X=545,Y=202},{X=560,Y=202},{X=559,Y=208},{X=544,Y=208}}, Confidence 0.6020
Word: 'Buaion', Bounding polygon {{X=561,Y=202},{X=580,Y=202},{X=579,Y=208},{X=560,Y=208}}, Confidence 0.2910
Line: 'Daily SCRUM', Bounding polygon {{X=537,Y=259},{X=575,Y=260},{X=575,Y=266},{X=537,Y=265}}
Word: 'Daily', Bounding polygon {{X=538,Y=259},{X=551,Y=260},{X=550,Y=266},{X=538,Y=265}}, Confidence 0.1750
Word: 'SCRUM', Bounding polygon {{X=552,Y=260},{X=570,Y=260},{X=570,Y=266},{X=551,Y=266}}, Confidence 0.1140
Line: '10:00 AM 11:00 AM', Bounding polygon {{X=536,Y=266},{X=590,Y=266},{X=590,Y=272},{X=536,Y=272}}
Word: '10:00', Bounding polygon {{X=539,Y=267},{X=553,Y=267},{X=552,Y=273},{X=538,Y=272}}, Confidence 0.8570
Word: 'AM', Bounding polygon {{X=554,Y=267},{X=561,Y=267},{X=560,Y=273},{X=553,Y=273}}, Confidence 0.9980
Word: '11:00', Bounding polygon {{X=564,Y=267},{X=578,Y=267},{X=577,Y=273},{X=563,Y=273}}, Confidence 0.4790
Word: 'AM', Bounding polygon {{X=579,Y=267},{X=586,Y=267},{X=585,Y=273},{X=578,Y=273}}, Confidence 0.9940
Line: 'Churlette de Crum', Bounding polygon {{X=538,Y=273},{X=584,Y=273},{X=585,Y=279},{X=538,Y=279}}
Word: 'Churlette', Bounding polygon {{X=539,Y=274},{X=562,Y=274},{X=561,Y=279},{X=538,Y=279}}, Confidence 0.4640
Word: 'de', Bounding polygon {{X=563,Y=274},{X=569,Y=274},{X=568,Y=279},{X=562,Y=279}}, Confidence 0.8100
Word: 'Crum', Bounding polygon {{X=570,Y=274},{X=582,Y=273},{X=581,Y=279},{X=569,Y=279}}, Confidence 0.8850
Line: 'Quarterly NI Hands', Bounding polygon {{X=538,Y=295},{X=588,Y=295},{X=588,Y=301},{X=538,Y=302}}
Word: 'Quarterly', Bounding polygon {{X=540,Y=296},{X=562,Y=296},{X=562,Y=302},{X=539,Y=302}}, Confidence 0.5230
Word: 'NI', Bounding polygon {{X=563,Y=296},{X=570,Y=296},{X=570,Y=302},{X=563,Y=302}}, Confidence 0.3030
Word: 'Hands', Bounding polygon {{X=572,Y=296},{X=588,Y=296},{X=588,Y=302},{X=571,Y=302}}, Confidence 0.6130
Line: '11.00 AM-12:00 PM', Bounding polygon {{X=536,Y=304},{X=588,Y=303},{X=588,Y=309},{X=536,Y=310}}
Word: '11.00', Bounding polygon {{X=538,Y=304},{X=552,Y=304},{X=552,Y=310},{X=538,Y=310}}, Confidence 0.6180
Word: 'AM-12:00', Bounding polygon {{X=554,Y=304},{X=578,Y=304},{X=577,Y=310},{X=553,Y=310}}, Confidence 0.2700
Word: 'PM', Bounding polygon {{X=579,Y=304},{X=586,Y=304},{X=586,Y=309},{X=578,Y=310}}, Confidence 0.6620
Line: 'Bebek Shaman', Bounding polygon {{X=538,Y=310},{X=577,Y=310},{X=577,Y=316},{X=538,Y=316}}
Word: 'Bebek', Bounding polygon {{X=539,Y=310},{X=554,Y=310},{X=554,Y=317},{X=539,Y=316}}, Confidence 0.6110
Word: 'Shaman', Bounding polygon {{X=555,Y=310},{X=576,Y=311},{X=576,Y=317},{X=555,Y=317}}, Confidence 0.6050
Line: 'Weekly stand up', Bounding polygon {{X=537,Y=332},{X=582,Y=333},{X=582,Y=339},{X=537,Y=338}}
Word: 'Weekly', Bounding polygon {{X=538,Y=332},{X=557,Y=333},{X=556,Y=339},{X=538,Y=338}}, Confidence 0.6060
Word: 'stand', Bounding polygon {{X=558,Y=333},{X=572,Y=334},{X=571,Y=340},{X=557,Y=339}}, Confidence 0.4890
Word: 'up', Bounding polygon {{X=574,Y=334},{X=580,Y=334},{X=580,Y=340},{X=573,Y=340}}, Confidence 0.8150
Line: '12:00 PM-1:00 PM', Bounding polygon {{X=537,Y=340},{X=583,Y=340},{X=583,Y=347},{X=536,Y=346}}
Word: '12:00', Bounding polygon {{X=539,Y=341},{X=553,Y=341},{X=552,Y=347},{X=538,Y=347}}, Confidence 0.8260
Word: 'PM-1:00', Bounding polygon {{X=554,Y=341},{X=575,Y=341},{X=574,Y=347},{X=553,Y=347}}, Confidence 0.2090
Word: 'PM', Bounding polygon {{X=576,Y=341},{X=583,Y=341},{X=582,Y=347},{X=575,Y=347}}, Confidence 0.0390
Line: 'Delle Marckre', Bounding polygon {{X=538,Y=347},{X=582,Y=347},{X=582,Y=352},{X=538,Y=353}}
Word: 'Delle', Bounding polygon {{X=540,Y=348},{X=559,Y=347},{X=558,Y=353},{X=539,Y=353}}, Confidence 0.5800
Word: 'Marckre', Bounding polygon {{X=560,Y=347},{X=582,Y=348},{X=582,Y=353},{X=559,Y=353}}, Confidence 0.2750
Line: 'Product review', Bounding polygon {{X=538,Y=370},{X=577,Y=370},{X=577,Y=376},{X=538,Y=375}}
Word: 'Product', Bounding polygon {{X=539,Y=370},{X=559,Y=371},{X=558,Y=376},{X=539,Y=376}}, Confidence 0.6150
Word: 'review', Bounding polygon {{X=560,Y=371},{X=576,Y=371},{X=575,Y=376},{X=559,Y=376}}, Confidence 0.0400
Kaynakları temizleme
Azure AI hizmetleri aboneliğini temizlemek ve kaldırmak istiyorsanız, kaynağı veya kaynak grubunu silebilirsiniz. Kaynak grubunun silinmesi, kaynak grubuyla ilişkili diğer tüm kaynakları da siler.
Sonraki adımlar
Bu hızlı başlangıçta Görüntü Analizi istemci SDK'sını yüklemeyi ve temel görüntü analizi çağrıları yapmayı öğrendiniz. Ardından Analysis 4.0 API özellikleri hakkında daha fazla bilgi edinin.
- Görüntü Analizine genel bakış
- Örnek kaynak kodu GitHub'da bulunabilir.
Python için Görüntü Analizi istemci SDK'sını kullanarak bir görüntüdeki metni okuyun ve resim yazısı oluşturun. Bu hızlı başlangıç, uzak görüntüyü analiz eder ve sonuçları konsola yazdırır.
Başvuru belgeleri | Paketi (PyPi) | Örnekleri
İpucu
Analysis 4.0 API'sinde birçok farklı işlem yapılabilir. Tüm kullanılabilir özellikleri gösteren örnekler için Görüntüyü Analiz Etme nasıl yapılır kılavuzuna bakın.
Önkoşullar
- Azure aboneliği - Ücretsiz bir abonelik oluşturun
- Python 3.x. Python yüklemeniz pip içermelidir. Pip'in yüklü olup olmadığını denetlemek için komut satırında komutunu çalıştırabilirsiniz
pip --version
. Python'ın en son sürümünü yükleyerek pip alın. - Azure aboneliğinizi aldıktan sonra Azure portalında bir Görüntü İşleme kaynağı oluşturun. Bu hızlı başlangıçtaki açıklamalı alt yazı özelliğini kullanmak için kaynağınızı desteklenen Azure bölgelerinden birinde oluşturmanız gerekir (bkz . Bölge listesi için resim yazıları ). Dağıtıldıktan sonra Kaynağa git'i seçin.
- Uygulamanızı Azure AI Vision hizmetine bağlamak için oluşturduğunuz kaynaktan anahtara ve uç noktaya ihtiyacınız vardır.
- Hizmeti denemek ve daha sonra üretim için ücretli bir katmana yükseltmek için ücretsiz fiyatlandırma katmanını (
F0
) kullanabilirsiniz.
Ortam değişkenlerini oluşturma
Bu örnekte, kimlik bilgilerinizi uygulamayı çalıştıran yerel makinedeki ortam değişkenlerine yazın.
Azure portala gidin. Önkoşullar bölümünde oluşturduğunuz kaynak başarıyla dağıtıldıysa, Sonraki Adımlar'ın altında Kaynağa git'i seçin. Anahtarınızı ve uç noktanızı Anahtarlar ve Uç Nokta sayfasındaki Kaynak Yönetimi'nin altında bulabilirsiniz. Kaynak anahtarınız Azure abonelik kimliğiniz ile aynı değildir.
Anahtarınızın ve uç noktanızın ortam değişkenini ayarlamak için bir konsol penceresi açın ve işletim sisteminiz ve geliştirme ortamınıza yönelik yönergeleri izleyin.
- Ortam değişkenini
VISION_KEY
ayarlamak için değerini kaynağınızın anahtarlarından biriyle değiştirin<your_key>
. - Ortam değişkenini
VISION_ENDPOINT
ayarlamak için değerini kaynağınızın uç noktasıyla değiştirin<your_endpoint>
.
Önemli
API anahtarı kullanıyorsanız, bunu Azure Key Vault gibi başka bir yerde güvenli bir şekilde depolayın. API anahtarını doğrudan kodunuzla eklemeyin ve hiçbir zaman herkese açık olarak göndermeyin.
Yapay zeka hizmetleri güvenliği hakkında daha fazla bilgi için bkz . Azure AI hizmetlerine yönelik isteklerin kimliğini doğrulama.
setx VISION_KEY <your_key>
setx VISION_ENDPOINT <your_endpoint>
Ortam değişkenlerini ekledikten sonra, konsol penceresi de dahil olmak üzere ortam değişkenlerini okuyacak tüm çalışan programları yeniden başlatmanız gerekebilir.
Görüntü analizi
Yeni projeyi istediğiniz yerde bir komut istemi açın ve quickstart.py adlı yeni bir dosya oluşturun.
Görüntü Analizi SDK'sını yüklemek için şu komutu çalıştırın:
pip install azure-ai-vision-imageanalysis
Aşağıdaki kodu quickstart.py kopyalayın:
İpucu
Kod, görüntü URL'sini analiz etme işlemini gösterir. Program bellek arabelleğinden bir görüntüyü de analiz edebilirsiniz. Daha fazla bilgi için Görüntüyü Analiz Etme nasıl yapılır kılavuzuna bakın.
import os from azure.ai.vision.imageanalysis import ImageAnalysisClient from azure.ai.vision.imageanalysis.models import VisualFeatures from azure.core.credentials import AzureKeyCredential # Set the values of your computer vision endpoint and computer vision key # as environment variables: try: endpoint = os.environ["VISION_ENDPOINT"] key = os.environ["VISION_KEY"] except KeyError: print("Missing environment variable 'VISION_ENDPOINT' or 'VISION_KEY'") print("Set them before running this sample.") exit() # Create an Image Analysis client client = ImageAnalysisClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) # Get a caption for the image. This will be a synchronously (blocking) call. result = client.analyze_from_url( image_url="https://zcusa.951200.xyz/azure/ai-services/computer-vision/media/quickstarts/presentation.png", visual_features=[VisualFeatures.CAPTION, VisualFeatures.READ], gender_neutral_caption=True, # Optional (default is False) ) print("Image analysis results:") # Print caption results to the console print(" Caption:") if result.caption is not None: print(f" '{result.caption.text}', Confidence {result.caption.confidence:.4f}") # Print text (OCR) analysis results to the console print(" Read:") if result.read is not None: for line in result.read.blocks[0].lines: print(f" Line: '{line.text}', Bounding box {line.bounding_polygon}") for word in line.words: print(f" Word: '{word.text}', Bounding polygon {word.bounding_polygon}, Confidence {word.confidence:.4f}")
Ardından hızlı başlangıç dosyanızdaki komutuyla
python
uygulamayı çalıştırın.python quickstart.py
Çıktı
Konsol çıktısı aşağıdaki metne benzer bir şey göstermelidir:
Caption:
'a person pointing at a screen', Confidence 0.4892
Text:
Line: '9:35 AM', Bounding polygon {130, 129, 215, 130, 215, 149, 130, 148}
Word: '9:35', Bounding polygon {131, 130, 171, 130, 171, 149, 130, 149}, Confidence 0.9930
Word: 'AM', Bounding polygon {179, 130, 204, 130, 203, 149, 178, 149}, Confidence 0.9980
Line: 'E Conference room 154584354', Bounding polygon {130, 153, 224, 154, 224, 161, 130, 161}
Word: 'E', Bounding polygon {131, 154, 135, 154, 135, 161, 131, 161}, Confidence 0.1040
Word: 'Conference', Bounding polygon {142, 154, 174, 154, 173, 161, 141, 161}, Confidence 0.9020
Word: 'room', Bounding polygon {175, 154, 189, 155, 188, 161, 175, 161}, Confidence 0.7960
Word: '154584354', Bounding polygon {192, 155, 224, 154, 223, 162, 191, 161}, Confidence 0.8640
Line: '#: 555-173-4547', Bounding polygon {130, 163, 182, 164, 181, 171, 130, 170}
Word: '#:', Bounding polygon {131, 163, 139, 164, 139, 171, 131, 171}, Confidence 0.0360
Word: '555-173-4547', Bounding polygon {142, 164, 182, 165, 181, 171, 142, 171}, Confidence 0.5970
Line: 'Town Hall', Bounding polygon {546, 180, 590, 180, 590, 190, 546, 190}
Word: 'Town', Bounding polygon {547, 181, 568, 181, 568, 190, 546, 191}, Confidence 0.9810
Word: 'Hall', Bounding polygon {570, 181, 590, 181, 590, 191, 570, 190}, Confidence 0.9910
Line: '9:00 AM - 10:00 AM', Bounding polygon {546, 191, 596, 192, 596, 200, 546, 199}
Word: '9:00', Bounding polygon {546, 192, 555, 192, 555, 200, 546, 200}, Confidence 0.0900
Word: 'AM', Bounding polygon {557, 192, 565, 192, 565, 200, 557, 200}, Confidence 0.9910
Word: '-', Bounding polygon {567, 192, 569, 192, 569, 200, 567, 200}, Confidence 0.6910
Word: '10:00', Bounding polygon {570, 192, 585, 193, 584, 200, 570, 200}, Confidence 0.8850
Word: 'AM', Bounding polygon {586, 193, 593, 194, 593, 200, 586, 200}, Confidence 0.9910
Line: 'Aaron Buaion', Bounding polygon {543, 201, 581, 201, 581, 208, 543, 208}
Word: 'Aaron', Bounding polygon {545, 202, 560, 202, 559, 208, 544, 208}, Confidence 0.6020
Word: 'Buaion', Bounding polygon {561, 202, 580, 202, 579, 208, 560, 208}, Confidence 0.2910
Line: 'Daily SCRUM', Bounding polygon {537, 259, 575, 260, 575, 266, 537, 265}
Word: 'Daily', Bounding polygon {538, 259, 551, 260, 550, 266, 538, 265}, Confidence 0.1750
Word: 'SCRUM', Bounding polygon {552, 260, 570, 260, 570, 266, 551, 266}, Confidence 0.1140
Line: '10:00 AM 11:00 AM', Bounding polygon {536, 266, 590, 266, 590, 272, 536, 272}
Word: '10:00', Bounding polygon {539, 267, 553, 267, 552, 273, 538, 272}, Confidence 0.8570
Word: 'AM', Bounding polygon {554, 267, 561, 267, 560, 273, 553, 273}, Confidence 0.9980
Word: '11:00', Bounding polygon {564, 267, 578, 267, 577, 273, 563, 273}, Confidence 0.4790
Word: 'AM', Bounding polygon {579, 267, 586, 267, 585, 273, 578, 273}, Confidence 0.9940
Line: 'Churlette de Crum', Bounding polygon {538, 273, 584, 273, 585, 279, 538, 279}
Word: 'Churlette', Bounding polygon {539, 274, 562, 274, 561, 279, 538, 279}, Confidence 0.4640
Word: 'de', Bounding polygon {563, 274, 569, 274, 568, 279, 562, 279}, Confidence 0.8100
Word: 'Crum', Bounding polygon {570, 274, 582, 273, 581, 279, 569, 279}, Confidence 0.8850
Line: 'Quarterly NI Hands', Bounding polygon {538, 295, 588, 295, 588, 301, 538, 302}
Word: 'Quarterly', Bounding polygon {540, 296, 562, 296, 562, 302, 539, 302}, Confidence 0.5230
Word: 'NI', Bounding polygon {563, 296, 570, 296, 570, 302, 563, 302}, Confidence 0.3030
Word: 'Hands', Bounding polygon {572, 296, 588, 296, 588, 302, 571, 302}, Confidence 0.6130
Line: '11.00 AM-12:00 PM', Bounding polygon {536, 304, 588, 303, 588, 309, 536, 310}
Word: '11.00', Bounding polygon {538, 304, 552, 304, 552, 310, 538, 310}, Confidence 0.6180
Word: 'AM-12:00', Bounding polygon {554, 304, 578, 304, 577, 310, 553, 310}, Confidence 0.2700
Word: 'PM', Bounding polygon {579, 304, 586, 304, 586, 309, 578, 310}, Confidence 0.6620
Line: 'Bebek Shaman', Bounding polygon {538, 310, 577, 310, 577, 316, 538, 316}
Word: 'Bebek', Bounding polygon {539, 310, 554, 310, 554, 317, 539, 316}, Confidence 0.6110
Word: 'Shaman', Bounding polygon {555, 310, 576, 311, 576, 317, 555, 317}, Confidence 0.6050
Line: 'Weekly stand up', Bounding polygon {537, 332, 582, 333, 582, 339, 537, 338}
Word: 'Weekly', Bounding polygon {538, 332, 557, 333, 556, 339, 538, 338}, Confidence 0.6060
Word: 'stand', Bounding polygon {558, 333, 572, 334, 571, 340, 557, 339}, Confidence 0.4890
Word: 'up', Bounding polygon {574, 334, 580, 334, 580, 340, 573, 340}, Confidence 0.8150
Line: '12:00 PM-1:00 PM', Bounding polygon {537, 340, 583, 340, 583, 347, 536, 346}
Word: '12:00', Bounding polygon {539, 341, 553, 341, 552, 347, 538, 347}, Confidence 0.8260
Word: 'PM-1:00', Bounding polygon {554, 341, 575, 341, 574, 347, 553, 347}, Confidence 0.2090
Word: 'PM', Bounding polygon {576, 341, 583, 341, 582, 347, 575, 347}, Confidence 0.0390
Line: 'Delle Marckre', Bounding polygon {538, 347, 582, 347, 582, 352, 538, 353}
Word: 'Delle', Bounding polygon {540, 348, 559, 347, 558, 353, 539, 353}, Confidence 0.5800
Word: 'Marckre', Bounding polygon {560, 347, 582, 348, 582, 353, 559, 353}, Confidence 0.2750
Line: 'Product review', Bounding polygon {538, 370, 577, 370, 577, 376, 538, 375}
Word: 'Product', Bounding polygon {539, 370, 559, 371, 558, 376, 539, 376}, Confidence 0.6150
Word: 'review', Bounding polygon {560, 371, 576, 371, 575, 376, 559, 376}, Confidence 0.0400
Kaynakları temizleme
Azure AI hizmetleri aboneliğini temizlemek ve kaldırmak istiyorsanız, kaynağı veya kaynak grubunu silebilirsiniz. Kaynak grubunun silinmesi, kaynak grubuyla ilişkili diğer tüm kaynakları da siler.
Sonraki adımlar
Bu hızlı başlangıçta Görüntü Analizi istemci SDK'sını yüklemeyi ve temel görüntü analizi çağrıları yapmayı öğrendiniz. Ardından Analysis 4.0 API özellikleri hakkında daha fazla bilgi edinin.
- Görüntü Analizine genel bakış
- Örnek kaynak kodu GitHub'da bulunabilir.
Görüntüdeki metni okumak ve resim yazısı oluşturmak için Java için Görüntü Analizi istemci SDK'sını kullanın. Bu hızlı başlangıç, uzak görüntüyü analiz eder ve sonuçları konsola yazdırır.
Başvuru belgeleri | Maven Paket | Örnekleri
İpucu
Analysis 4.0 API'sinde birçok farklı işlem yapılabilir. Tüm kullanılabilir özellikleri gösteren örnekler için Görüntüyü Analiz Etme nasıl yapılır kılavuzuna bakın.
Önkoşullar
- Windows 10 (veya üzeri) x64 veya Linux x64 makinesi.
- Azul Zulu OpenJDK, Microsoft Build of OpenJDK, Oracle Java veya tercih ettiğiniz JDK gibi Java Geliştirme Seti (JDK) sürüm 8 veya üzeri yüklü. Sürümünüzü görmek ve başarılı bir yüklemeyi onaylamak için bir komut satırından komutunu çalıştırın
java -version
. Java yüklemesinin sistem mimarisinde yerel olduğundan ve öykünmeyle çalışmadığından emin olun. - Apache Maven yüklendi. Linux'ta varsa dağıtım depolarından yükleyin. Yüklemenin başarılı olduğunu onaylamak için komutunu çalıştırın
mvn -v
. - Azure aboneliği - Ücretsiz bir abonelik oluşturun
- Azure aboneliğinizi aldıktan sonra Azure portalında bir Görüntü İşleme kaynağı oluşturun. Bu hızlı başlangıçtaki açıklamalı alt yazı özelliğini kullanmak için kaynağınızı desteklenen Azure bölgelerinden birinde oluşturmanız gerekir (bkz . Resim yazıları). Dağıtıldıktan sonra Kaynağa git'i seçin.
- Uygulamanızı Azure AI Vision hizmetine bağlamak için oluşturduğunuz kaynaktan anahtara ve uç noktaya ihtiyacınız vardır.
- Hizmeti denemek ve daha sonra üretim için ücretli bir katmana yükseltmek için ücretsiz fiyatlandırma katmanını (
F0
) kullanabilirsiniz.
Uygulamayı ayarlama
Bir konsol penceresi açın ve hızlı başlangıç uygulamanız için yeni bir klasör oluşturun.
Bir metin düzenleyicisi açın ve aşağıdaki içeriği yeni bir dosyaya kopyalayın. Dosyayı proje dizininizde olduğu gibi
pom.xml
kaydedin<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.example</groupId> <artifactId>my-application-name</artifactId> <version>1.0.0</version> <dependencies> <!-- https://mvnrepository.com/artifact/com.azure/azure-ai-vision-imageanalysis --> <dependency> <groupId>com.azure</groupId> <artifactId>azure-ai-vision-imageanalysis</artifactId> <version>1.0.0-beta.2</version> </dependency> <!-- https://mvnrepository.com/artifact/org.slf4j/slf4j-nop --> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-nop</artifactId> <version>1.7.36</version> </dependency> </dependencies> </project>
Sürüm değerini (
1.0.0-beta.2
) Maven deposundaki azure-ai-vision-imageanalysis paketinin kullanılabilir en son sürümüne göre güncelleştirin.Proje dizininde aşağıdakileri çalıştırarak SDK'yi ve bağımlılıkları yükleyin:
mvn clean dependency:copy-dependencies
İşlem başarılı olduktan sonra, klasörlerin
target\dependency
oluşturduğunu ve dosya içerdiğini.jar
doğrulayın.
Ortam değişkenlerini oluşturma
Bu örnekte, kimlik bilgilerinizi uygulamayı çalıştıran yerel makinedeki ortam değişkenlerine yazın.
Azure portala gidin. Önkoşullar bölümünde oluşturduğunuz kaynak başarıyla dağıtıldıysa, Sonraki Adımlar'ın altında Kaynağa git'i seçin. Anahtarınızı ve uç noktanızı Anahtarlar ve Uç Nokta sayfasındaki Kaynak Yönetimi'nin altında bulabilirsiniz. Kaynak anahtarınız Azure abonelik kimliğiniz ile aynı değildir.
Anahtarınızın ve uç noktanızın ortam değişkenini ayarlamak için bir konsol penceresi açın ve işletim sisteminiz ve geliştirme ortamınıza yönelik yönergeleri izleyin.
- Ortam değişkenini
VISION_KEY
ayarlamak için değerini kaynağınızın anahtarlarından biriyle değiştirin<your_key>
. - Ortam değişkenini
VISION_ENDPOINT
ayarlamak için değerini kaynağınızın uç noktasıyla değiştirin<your_endpoint>
.
Önemli
API anahtarı kullanıyorsanız, bunu Azure Key Vault gibi başka bir yerde güvenli bir şekilde depolayın. API anahtarını doğrudan kodunuzla eklemeyin ve hiçbir zaman herkese açık olarak göndermeyin.
Yapay zeka hizmetleri güvenliği hakkında daha fazla bilgi için bkz . Azure AI hizmetlerine yönelik isteklerin kimliğini doğrulama.
setx VISION_KEY <your_key>
setx VISION_ENDPOINT <your_endpoint>
Ortam değişkenlerini ekledikten sonra, konsol penceresi de dahil olmak üzere ortam değişkenlerini okuyacak tüm çalışan programları yeniden başlatmanız gerekebilir.
Görüntüyü Analiz Et
Bir metin düzenleyicisi açın ve aşağıdaki içeriği yeni bir dosyaya kopyalayın. Dosyayı farklı kaydetme ImageAnalysis.java
import com.azure.ai.vision.imageanalysis.*;
import com.azure.ai.vision.imageanalysis.models.*;
import com.azure.core.credential.KeyCredential;
import java.util.Arrays;
public class ImageAnalysisQuickStart {
public static void main(String[] args) {
String endpoint = System.getenv("VISION_ENDPOINT");
String key = System.getenv("VISION_KEY");
if (endpoint == null || key == null) {
System.out.println("Missing environment variable 'VISION_ENDPOINT' or 'VISION_KEY'.");
System.out.println("Set them before running this sample.");
System.exit(1);
}
// Create a synchronous Image Analysis client.
ImageAnalysisClient client = new ImageAnalysisClientBuilder()
.endpoint(endpoint)
.credential(new KeyCredential(key))
.buildClient();
// This is a synchronous (blocking) call.
ImageAnalysisResult result = client.analyzeFromUrl(
"https://zcusa.951200.xyz/azure/ai-services/computer-vision/media/quickstarts/presentation.png",
Arrays.asList(VisualFeatures.CAPTION, VisualFeatures.READ),
new ImageAnalysisOptions().setGenderNeutralCaption(true));
// Print analysis results to the console
System.out.println("Image analysis results:");
System.out.println(" Caption:");
System.out.println(" \"" + result.getCaption().getText() + "\", Confidence "
+ String.format("%.4f", result.getCaption().getConfidence()));
System.out.println(" Read:");
for (DetectedTextLine line : result.getRead().getBlocks().get(0).getLines()) {
System.out.println(" Line: '" + line.getText()
+ "', Bounding polygon " + line.getBoundingPolygon());
for (DetectedTextWord word : line.getWords()) {
System.out.println(" Word: '" + word.getText()
+ "', Bounding polygon " + word.getBoundingPolygon()
+ ", Confidence " + String.format("%.4f", word.getConfidence()));
}
}
}
}
İpucu
Kod, URL'den bir görüntüyü analiz eder. Program bellek arabelleğinden bir görüntüyü de analiz edebilirsiniz. Daha fazla bilgi için Görüntüyü Analiz Etme nasıl yapılır kılavuzuna bakın.
Java dosyasını derlemek için aşağıdaki komutu çalıştırın:
javac ImageAnalysis.java -cp ".;target/dependency/*"
Dosyanın geçerli klasörde oluşturulduğunu görmeniz ImageAnalysis.class
gerekir.
Uygulamayı çalıştırmak için aşağıdaki komutu çalıştırın:
java -cp ".;target/dependency/*" ImageAnalysis
Çıktı
Konsol çıktısı aşağıdaki metne benzer bir şey göstermelidir:
Image analysis results:
Caption:
"a person pointing at a screen", Confidence 0.7768
Read:
Line: '9:35 AM', Bounding polygon [(x=131, y=130), (x=214, y=130), (x=214, y=148), (x=131, y=148)]
Word: '9:35', Bounding polygon [(x=132, y=130), (x=172, y=131), (x=171, y=149), (x=131, y=148)], Confidence 0.9770
Word: 'AM', Bounding polygon [(x=180, y=131), (x=203, y=131), (x=202, y=149), (x=180, y=149)], Confidence 0.9980
Line: 'Conference room 154584354', Bounding polygon [(x=132, y=153), (x=224, y=153), (x=224, y=161), (x=132, y=160)]
Word: 'Conference', Bounding polygon [(x=143, y=153), (x=174, y=154), (x=174, y=161), (x=143, y=161)], Confidence 0.6930
Word: 'room', Bounding polygon [(x=176, y=154), (x=188, y=154), (x=188, y=161), (x=176, y=161)], Confidence 0.9590
Word: '154584354', Bounding polygon [(x=192, y=154), (x=224, y=154), (x=223, y=161), (x=192, y=161)], Confidence 0.7050
Line: ': 555-123-4567', Bounding polygon [(x=133, y=164), (x=183, y=164), (x=183, y=170), (x=133, y=170)]
Word: ':', Bounding polygon [(x=134, y=165), (x=137, y=165), (x=136, y=171), (x=133, y=171)], Confidence 0.1620
Word: '555-123-4567', Bounding polygon [(x=143, y=165), (x=182, y=165), (x=181, y=171), (x=143, y=171)], Confidence 0.6530
Line: 'Town Hall', Bounding polygon [(x=545, y=178), (x=588, y=179), (x=588, y=190), (x=545, y=190)]
Word: 'Town', Bounding polygon [(x=545, y=179), (x=569, y=180), (x=569, y=190), (x=545, y=190)], Confidence 0.9880
Word: 'Hall', Bounding polygon [(x=571, y=180), (x=589, y=180), (x=589, y=190), (x=571, y=190)], Confidence 0.9900
Line: '9:00 AM - 10:00 AM', Bounding polygon [(x=545, y=191), (x=596, y=191), (x=596, y=199), (x=545, y=198)]
Word: '9:00', Bounding polygon [(x=546, y=191), (x=556, y=192), (x=556, y=199), (x=546, y=199)], Confidence 0.7580
Word: 'AM', Bounding polygon [(x=558, y=192), (x=565, y=192), (x=564, y=199), (x=558, y=199)], Confidence 0.9890
Word: '-', Bounding polygon [(x=567, y=192), (x=570, y=192), (x=569, y=199), (x=567, y=199)], Confidence 0.8960
Word: '10:00', Bounding polygon [(x=571, y=192), (x=585, y=192), (x=585, y=199), (x=571, y=199)], Confidence 0.7970
Word: 'AM', Bounding polygon [(x=587, y=192), (x=594, y=193), (x=593, y=199), (x=586, y=199)], Confidence 0.9940
Line: 'Aaron Blaion', Bounding polygon [(x=542, y=201), (x=581, y=201), (x=581, y=207), (x=542, y=207)]
Word: 'Aaron', Bounding polygon [(x=545, y=201), (x=560, y=202), (x=560, y=208), (x=545, y=208)], Confidence 0.7180
Word: 'Blaion', Bounding polygon [(x=562, y=202), (x=579, y=202), (x=579, y=207), (x=562, y=207)], Confidence 0.2740
Line: 'Daily SCRUM', Bounding polygon [(x=537, y=258), (x=574, y=259), (x=574, y=266), (x=537, y=265)]
Word: 'Daily', Bounding polygon [(x=538, y=259), (x=551, y=259), (x=551, y=266), (x=538, y=265)], Confidence 0.4040
Word: 'SCRUM', Bounding polygon [(x=553, y=259), (x=570, y=260), (x=570, y=265), (x=553, y=266)], Confidence 0.6970
Line: '10:00 AM-11:00 AM', Bounding polygon [(x=535, y=266), (x=589, y=265), (x=589, y=272), (x=535, y=273)]
Word: '10:00', Bounding polygon [(x=539, y=267), (x=553, y=266), (x=552, y=273), (x=539, y=274)], Confidence 0.2190
Word: 'AM-11:00', Bounding polygon [(x=554, y=266), (x=578, y=266), (x=578, y=272), (x=554, y=273)], Confidence 0.1750
Word: 'AM', Bounding polygon [(x=580, y=266), (x=587, y=266), (x=586, y=272), (x=580, y=272)], Confidence 1.0000
Line: 'Charlene de Crum', Bounding polygon [(x=538, y=272), (x=588, y=273), (x=588, y=279), (x=538, y=279)]
Word: 'Charlene', Bounding polygon [(x=538, y=273), (x=562, y=273), (x=562, y=280), (x=538, y=280)], Confidence 0.3220
Word: 'de', Bounding polygon [(x=563, y=273), (x=569, y=273), (x=569, y=280), (x=563, y=280)], Confidence 0.9100
Word: 'Crum', Bounding polygon [(x=570, y=273), (x=582, y=273), (x=583, y=280), (x=571, y=280)], Confidence 0.8710
Line: 'Quarterly NI Handa', Bounding polygon [(x=537, y=295), (x=588, y=295), (x=588, y=302), (x=537, y=302)]
Word: 'Quarterly', Bounding polygon [(x=539, y=296), (x=563, y=296), (x=563, y=302), (x=538, y=302)], Confidence 0.6030
Word: 'NI', Bounding polygon [(x=564, y=296), (x=570, y=296), (x=571, y=302), (x=564, y=302)], Confidence 0.7300
Word: 'Handa', Bounding polygon [(x=572, y=296), (x=588, y=296), (x=588, y=302), (x=572, y=302)], Confidence 0.9050
Line: '11.00 AM-12:00 PM', Bounding polygon [(x=538, y=303), (x=587, y=303), (x=587, y=309), (x=538, y=309)]
Word: '11.00', Bounding polygon [(x=539, y=303), (x=552, y=303), (x=553, y=309), (x=539, y=310)], Confidence 0.6710
Word: 'AM-12:00', Bounding polygon [(x=554, y=303), (x=578, y=303), (x=578, y=309), (x=554, y=309)], Confidence 0.6560
Word: 'PM', Bounding polygon [(x=579, y=303), (x=586, y=303), (x=586, y=309), (x=580, y=309)], Confidence 0.4540
Line: 'Bobek Shemar', Bounding polygon [(x=538, y=310), (x=577, y=310), (x=577, y=316), (x=538, y=316)]
Word: 'Bobek', Bounding polygon [(x=539, y=310), (x=554, y=311), (x=554, y=317), (x=539, y=317)], Confidence 0.6320
Word: 'Shemar', Bounding polygon [(x=556, y=311), (x=576, y=311), (x=577, y=317), (x=556, y=317)], Confidence 0.2190
Line: 'Weekly aband up', Bounding polygon [(x=538, y=332), (x=583, y=333), (x=583, y=339), (x=538, y=338)]
Word: 'Weekly', Bounding polygon [(x=539, y=333), (x=557, y=333), (x=557, y=339), (x=539, y=339)], Confidence 0.5750
Word: 'aband', Bounding polygon [(x=558, y=334), (x=573, y=334), (x=573, y=339), (x=558, y=339)], Confidence 0.4750
Word: 'up', Bounding polygon [(x=574, y=334), (x=580, y=334), (x=580, y=339), (x=574, y=339)], Confidence 0.8650
Line: '12:00 PM-1:00 PM', Bounding polygon [(x=538, y=339), (x=585, y=339), (x=585, y=346), (x=538, y=346)]
Word: '12:00', Bounding polygon [(x=539, y=339), (x=553, y=340), (x=553, y=347), (x=539, y=346)], Confidence 0.7090
Word: 'PM-1:00', Bounding polygon [(x=554, y=340), (x=575, y=340), (x=575, y=346), (x=554, y=347)], Confidence 0.9080
Word: 'PM', Bounding polygon [(x=576, y=340), (x=583, y=340), (x=583, y=346), (x=576, y=346)], Confidence 0.9980
Line: 'Danielle MarchTe', Bounding polygon [(x=538, y=346), (x=583, y=346), (x=583, y=352), (x=538, y=352)]
Word: 'Danielle', Bounding polygon [(x=539, y=347), (x=559, y=347), (x=559, y=352), (x=539, y=353)], Confidence 0.1960
Word: 'MarchTe', Bounding polygon [(x=560, y=347), (x=582, y=347), (x=582, y=352), (x=560, y=352)], Confidence 0.5710
Line: 'Product reviret', Bounding polygon [(x=537, y=370), (x=578, y=370), (x=578, y=375), (x=537, y=375)]
Word: 'Product', Bounding polygon [(x=539, y=370), (x=559, y=370), (x=559, y=376), (x=539, y=375)], Confidence 0.7000
Word: 'reviret', Bounding polygon [(x=560, y=370), (x=578, y=371), (x=578, y=375), (x=560, y=376)], Confidence 0.2180
Kaynakları temizleme
Azure AI hizmetleri aboneliğini temizlemek ve kaldırmak istiyorsanız, kaynağı veya kaynak grubunu silebilirsiniz. Kaynak grubunun silinmesi, kaynak grubuyla ilişkili diğer tüm kaynakları da siler.
Sonraki adımlar
Bu hızlı başlangıçta Görüntü Analizi istemci SDK'sını yüklemeyi ve temel görüntü analizi çağrıları yapmayı öğrendiniz. Ardından Analysis 4.0 API özellikleri hakkında daha fazla bilgi edinin.
- Görüntü Analizine genel bakış
- Örnek kaynak kodu GitHub'da bulunabilir.
Görüntüdeki metni okumak ve resim yazısı oluşturmak için JavaScript için Görüntü Analizi istemci SDK'sını kullanın. Bu hızlı başlangıç, uzak görüntüyü analiz eder ve sonuçları konsola yazdırır.
Başvuru belgeleri | Paketi (npm) | Örnekler
İpucu
Analysis 4.0 API'sinde birçok farklı işlem yapılabilir. Tüm kullanılabilir özellikleri gösteren örnekler için Görüntüyü Analiz Etme nasıl yapılır kılavuzuna bakın.
Önkoşullar
- Azure aboneliği - Ücretsiz bir abonelik oluşturun
- Node.js'in geçerli sürümü
- Edge, Chrome, Firefox veya Safari internet tarayıcısının geçerli sürümü.
- Azure aboneliğinizi aldıktan sonra anahtarınızı ve uç noktanızı almak için Azure portalında bir Görüntü İşleme kaynağı oluşturun. Bu hızlı başlangıçtaki açıklamalı alt yazı özelliğini kullanmak için kaynağınızı desteklenen Azure bölgelerinden birinde oluşturmanız gerekir (bkz . Bölge listesi için resim yazıları ). Dağıtıldıktan sonra Kaynağa git'i seçin.
- Uygulamanızı Azure AI Vision hizmetine bağlamak için oluşturduğunuz kaynaktan anahtara ve uç noktaya ihtiyacınız vardır.
- Hizmeti denemek ve daha sonra üretim için ücretli bir katmana yükseltmek için ücretsiz fiyatlandırma katmanını (
F0
) kullanabilirsiniz.
Ortam değişkenlerini oluşturma
Bu örnekte, kimlik bilgilerinizi uygulamayı çalıştıran yerel makinedeki ortam değişkenlerine yazın.
Azure portala gidin. Önkoşullar bölümünde oluşturduğunuz kaynak başarıyla dağıtıldıysa, Sonraki Adımlar'ın altında Kaynağa git'i seçin. Anahtarınızı ve uç noktanızı Anahtarlar ve Uç Nokta sayfasındaki Kaynak Yönetimi'nin altında bulabilirsiniz. Kaynak anahtarınız Azure abonelik kimliğiniz ile aynı değildir.
Anahtarınızın ve uç noktanızın ortam değişkenini ayarlamak için bir konsol penceresi açın ve işletim sisteminiz ve geliştirme ortamınıza yönelik yönergeleri izleyin.
- Ortam değişkenini
VISION_KEY
ayarlamak için değerini kaynağınızın anahtarlarından biriyle değiştirin<your_key>
. - Ortam değişkenini
VISION_ENDPOINT
ayarlamak için değerini kaynağınızın uç noktasıyla değiştirin<your_endpoint>
.
Önemli
API anahtarı kullanıyorsanız, bunu Azure Key Vault gibi başka bir yerde güvenli bir şekilde depolayın. API anahtarını doğrudan kodunuzla eklemeyin ve hiçbir zaman herkese açık olarak göndermeyin.
Yapay zeka hizmetleri güvenliği hakkında daha fazla bilgi için bkz . Azure AI hizmetlerine yönelik isteklerin kimliğini doğrulama.
setx VISION_KEY <your_key>
setx VISION_ENDPOINT <your_endpoint>
Ortam değişkenlerini ekledikten sonra, konsol penceresi de dahil olmak üzere ortam değişkenlerini okuyacak tüm çalışan programları yeniden başlatmanız gerekebilir.
Görüntü analizi
Yeni bir Node.js uygulaması oluşturma
Konsol penceresinde (cmd, PowerShell veya Bash gibi), uygulamanız için yeni bir dizin oluşturun ve bu dizine gidin.
mkdir myapp && cd myapp
Bir
package.json
dosyası ile bir düğüm uygulaması oluşturmak içinnpm init
komutunu çalıştırın.npm init
İstemci kitaplığını yükleme
npm paketini yükleyin
@azure-rest/ai-vision-image-analysis
:npm install @azure-rest/ai-vision-image-analysis
Ayrıca dotenv paketini de yükleyin:
npm install dotenv
Uygulamanızın
package.json
dosyası bağımlılıklarla güncelleştirilecek.yeni bir dosya oluşturun index.js. Bir metin düzenleyicisinde açın ve aşağıdaki kodu yapıştırın.
const { ImageAnalysisClient } = require('@azure-rest/ai-vision-image-analysis'); const createClient = require('@azure-rest/ai-vision-image-analysis').default; const { AzureKeyCredential } = require('@azure/core-auth'); // Load the .env file if it exists require("dotenv").config(); const endpoint = process.env['VISION_ENDPOINT']; const key = process.env['VISION_KEY']; const credential = new AzureKeyCredential(key); const client = createClient(endpoint, credential); const features = [ 'Caption', 'Read' ]; const imageUrl = 'https://zcusa.951200.xyz/azure/ai-services/computer-vision/media/quickstarts/presentation.png'; async function analyzeImageFromUrl() { const result = await client.path('/imageanalysis:analyze').post({ body: { url: imageUrl }, queryParameters: { features: features }, contentType: 'application/json' }); const iaResult = result.body; if (iaResult.captionResult) { console.log(`Caption: ${iaResult.captionResult.text} (confidence: ${iaResult.captionResult.confidence})`); } if (iaResult.readResult) { iaResult.readResult.blocks.forEach(block => console.log(`Text Block: ${JSON.stringify(block)}`)); } } analyzeImageFromUrl();
Uygulamayı hızlı başlangıç dosyanızdaki
node
komutuyla çalıştırın.node index.js
Kaynakları temizleme
Azure AI hizmetleri aboneliğini temizlemek ve kaldırmak istiyorsanız, kaynağı veya kaynak grubunu silebilirsiniz. Kaynak grubunun silinmesi, kaynak grubuyla ilişkili diğer tüm kaynakları da siler.
Sonraki adımlar
Bu hızlı başlangıçta Görüntü Analizi istemci kitaplığını yüklemeyi ve temel görüntü analizi çağrıları yapmayı öğrendiniz. Ardından API özelliklerini analiz etme hakkında daha fazla bilgi edinin.
- Görüntü Analizine genel bakış
- Bu örneğin kaynak kodu GitHub'da bulunabilir.
Metin okumak ve resim yazısı oluşturmak için Görüntü Analizi REST API'sini kullanın (yalnızca sürüm 4.0).
İpucu
Analysis 4.0 API'sinde birçok farklı işlem yapılabilir. Tüm kullanılabilir özellikleri gösteren örnekler için Görüntüyü Analiz Etme nasıl yapılır kılavuzuna bakın.
Önkoşullar
- Azure aboneliği - Ücretsiz bir abonelik oluşturun
- Azure aboneliğinizi aldıktan sonra anahtarınızı ve uç noktanızı almak için Azure portalında bir Görüntü İşleme kaynağı oluşturun. Bu hızlı başlangıçtaki açıklamalı alt yazı özelliğini kullanmak için kaynağınızı belirli Azure bölgelerinde oluşturmanız gerekir. Bkz. Bölge kullanılabilirliği. Dağıtıldıktan sonra Kaynağa git'i seçin.
- Uygulamanızı Azure AI Vision hizmetine bağlamak için oluşturduğunuz kaynaktan anahtara ve uç noktaya ihtiyacınız olacaktır. Anahtarınızı ve uç noktanızı hızlı başlangıcın ilerleyen bölümlerinde aşağıdaki koda yapıştıracaksınız.
- Hizmeti denemek ve daha sonra üretim için ücretli bir katmana yükseltmek için ücretsiz fiyatlandırma katmanını (
F0
) kullanabilirsiniz.
- cURL yüklü
Resim çözümleme
Bir görüntüyü çeşitli görsel özellikleri için analiz etmek için aşağıdaki adımları uygulayın:
Aşağıdaki
curl
komutu bir metin düzenleyicisine kopyalayın.curl.exe -H "Ocp-Apim-Subscription-Key: <subscriptionKey>" -H "Content-Type: application/json" "<endpoint>/computervision/imageanalysis:analyze?features=caption,read&model-version=latest&language=en&api-version=2024-02-01" -d "{'url':'https://zcusa.951200.xyz/azure/ai-services/computer-vision/media/quickstarts/presentation.png'}"
Gerektiğinde komutta aşağıdaki değişiklikleri yapın:
- değerini
<subscriptionKey>
Görüntü İşleme kaynak anahtarınızla değiştirin. - değerini
<endpoint>
Görüntü İşleme kaynak uç noktası URL'nizle değiştirin. Örneğin:https://YourResourceName.cognitiveservices.azure.com
. - İsteğe bağlı olarak, istek gövdesindeki görüntü URL’sini (
https://zcusa.951200.xyz/azure/ai-services/computer-vision/media/quickstarts/presentation.png
), analiz edilecek başka bir görüntünün URL’si ile değiştirin.
- değerini
Bir komut istemi penceresi açın.
Düzenlenen
curl
komutu metin düzenleyicisinden komut istemi penceresine yapıştırın ve ardından komutunu çalıştırın.
Yanıtı inceleme
Aşağıdaki örneğe benzer şekilde JSON'da başarılı bir yanıt döndürülür:
{
"modelVersion": "2023-10-01",
"captionResult":
{
"text": "a man pointing at a screen",
"confidence": 0.7767987847328186
},
"metadata":
{
"width": 1038,
"height": 692
},
"readResult":
{
"blocks":
[
{
"lines":
[
{
"text": "9:35 AM",
"boundingPolygon": [{"x":131,"y":130},{"x":214,"y":130},{"x":214,"y":148},{"x":131,"y":148}],
"words": [{"text":"9:35","boundingPolygon":[{"x":132,"y":130},{"x":172,"y":131},{"x":171,"y":149},{"x":131,"y":148}],"confidence":0.977},{"text":"AM","boundingPolygon":[{"x":180,"y":131},{"x":203,"y":131},{"x":202,"y":149},{"x":180,"y":149}],"confidence":0.998}]
},
{
"text": "Conference room 154584354",
"boundingPolygon": [{"x":132,"y":153},{"x":224,"y":153},{"x":224,"y":161},{"x":132,"y":160}],
"words": [{"text":"Conference","boundingPolygon":[{"x":143,"y":153},{"x":174,"y":154},{"x":174,"y":161},{"x":143,"y":161}],"confidence":0.693},{"text":"room","boundingPolygon":[{"x":176,"y":154},{"x":188,"y":154},{"x":188,"y":161},{"x":176,"y":161}],"confidence":0.959},{"text":"154584354","boundingPolygon":[{"x":192,"y":154},{"x":224,"y":154},{"x":223,"y":161},{"x":192,"y":161}],"confidence":0.705}]
},
{
"text": ": 555-123-4567",
"boundingPolygon": [{"x":133,"y":164},{"x":183,"y":164},{"x":183,"y":170},{"x":133,"y":170}],
"words": [{"text":":","boundingPolygon":[{"x":134,"y":165},{"x":137,"y":165},{"x":136,"y":171},{"x":133,"y":171}],"confidence":0.162},{"text":"555-123-4567","boundingPolygon":[{"x":143,"y":165},{"x":182,"y":165},{"x":181,"y":171},{"x":143,"y":171}],"confidence":0.653}]
},
{
"text": "Town Hall",
"boundingPolygon": [{"x":545,"y":178},{"x":588,"y":179},{"x":588,"y":190},{"x":545,"y":190}],
"words": [{"text":"Town","boundingPolygon":[{"x":545,"y":179},{"x":569,"y":180},{"x":569,"y":190},{"x":545,"y":190}],"confidence":0.988},{"text":"Hall","boundingPolygon":[{"x":571,"y":180},{"x":589,"y":180},{"x":589,"y":190},{"x":571,"y":190}],"confidence":0.99}]
},
{
"text": "9:00 AM - 10:00 AM",
"boundingPolygon": [{"x":545,"y":191},{"x":596,"y":191},{"x":596,"y":199},{"x":545,"y":198}],
"words": [{"text":"9:00","boundingPolygon":[{"x":546,"y":191},{"x":556,"y":192},{"x":556,"y":199},{"x":546,"y":199}],"confidence":0.758},{"text":"AM","boundingPolygon":[{"x":558,"y":192},{"x":565,"y":192},{"x":564,"y":199},{"x":558,"y":199}],"confidence":0.989},{"text":"-","boundingPolygon":[{"x":567,"y":192},{"x":570,"y":192},{"x":569,"y":199},{"x":567,"y":199}],"confidence":0.896},{"text":"10:00","boundingPolygon":[{"x":571,"y":192},{"x":585,"y":192},{"x":585,"y":199},{"x":571,"y":199}],"confidence":0.797},{"text":"AM","boundingPolygon":[{"x":587,"y":192},{"x":594,"y":193},{"x":593,"y":199},{"x":586,"y":199}],"confidence":0.994}]
},
{
"text": "Aaron Blaion",
"boundingPolygon": [{"x":542,"y":201},{"x":581,"y":201},{"x":581,"y":207},{"x":542,"y":207}],
"words": [{"text":"Aaron","boundingPolygon":[{"x":545,"y":201},{"x":560,"y":202},{"x":560,"y":208},{"x":545,"y":208}],"confidence":0.718},{"text":"Blaion","boundingPolygon":[{"x":562,"y":202},{"x":579,"y":202},{"x":579,"y":207},{"x":562,"y":207}],"confidence":0.274}]
},
{
"text": "Daily SCRUM",
"boundingPolygon": [{"x":537,"y":258},{"x":574,"y":259},{"x":574,"y":266},{"x":537,"y":265}],
"words": [{"text":"Daily","boundingPolygon":[{"x":538,"y":259},{"x":551,"y":259},{"x":551,"y":266},{"x":538,"y":265}],"confidence":0.404},{"text":"SCRUM","boundingPolygon":[{"x":553,"y":259},{"x":570,"y":260},{"x":570,"y":265},{"x":553,"y":266}],"confidence":0.697}]
},
{
"text": "10:00 AM-11:00 AM",
"boundingPolygon": [{"x":535,"y":266},{"x":589,"y":265},{"x":589,"y":272},{"x":535,"y":273}],
"words": [{"text":"10:00","boundingPolygon":[{"x":539,"y":267},{"x":553,"y":266},{"x":552,"y":273},{"x":539,"y":274}],"confidence":0.219},{"text":"AM-11:00","boundingPolygon":[{"x":554,"y":266},{"x":578,"y":266},{"x":578,"y":272},{"x":554,"y":273}],"confidence":0.175},{"text":"AM","boundingPolygon":[{"x":580,"y":266},{"x":587,"y":266},{"x":586,"y":272},{"x":580,"y":272}],"confidence":1}]
},
{
"text": "Charlene de Crum",
"boundingPolygon": [{"x":538,"y":272},{"x":588,"y":273},{"x":588,"y":279},{"x":538,"y":279}],
"words": [{"text":"Charlene","boundingPolygon":[{"x":538,"y":273},{"x":562,"y":273},{"x":562,"y":280},{"x":538,"y":280}],"confidence":0.322},{"text":"de","boundingPolygon":[{"x":563,"y":273},{"x":569,"y":273},{"x":569,"y":280},{"x":563,"y":280}],"confidence":0.91},{"text":"Crum","boundingPolygon":[{"x":570,"y":273},{"x":582,"y":273},{"x":583,"y":280},{"x":571,"y":280}],"confidence":0.871}]
},
{
"text": "Quarterly NI Handa",
"boundingPolygon": [{"x":537,"y":295},{"x":588,"y":295},{"x":588,"y":302},{"x":537,"y":302}],
"words": [{"text":"Quarterly","boundingPolygon":[{"x":539,"y":296},{"x":563,"y":296},{"x":563,"y":302},{"x":538,"y":302}],"confidence":0.603},{"text":"NI","boundingPolygon":[{"x":564,"y":296},{"x":570,"y":296},{"x":571,"y":302},{"x":564,"y":302}],"confidence":0.73},{"text":"Handa","boundingPolygon":[{"x":572,"y":296},{"x":588,"y":296},{"x":588,"y":302},{"x":572,"y":302}],"confidence":0.905}]
},
{
"text": "11.00 AM-12:00 PM",
"boundingPolygon": [{"x":538,"y":303},{"x":587,"y":303},{"x":587,"y":309},{"x":538,"y":309}],
"words": [{"text":"11.00","boundingPolygon":[{"x":539,"y":303},{"x":552,"y":303},{"x":553,"y":309},{"x":539,"y":310}],"confidence":0.671},{"text":"AM-12:00","boundingPolygon":[{"x":554,"y":303},{"x":578,"y":303},{"x":578,"y":309},{"x":554,"y":309}],"confidence":0.656},{"text":"PM","boundingPolygon":[{"x":579,"y":303},{"x":586,"y":303},{"x":586,"y":309},{"x":580,"y":309}],"confidence":0.454}]
},
{
"text": "Bobek Shemar",
"boundingPolygon": [{"x":538,"y":310},{"x":577,"y":310},{"x":577,"y":316},{"x":538,"y":316}],
"words": [{"text":"Bobek","boundingPolygon":[{"x":539,"y":310},{"x":554,"y":311},{"x":554,"y":317},{"x":539,"y":317}],"confidence":0.632},{"text":"Shemar","boundingPolygon":[{"x":556,"y":311},{"x":576,"y":311},{"x":577,"y":317},{"x":556,"y":317}],"confidence":0.219}]
},
{
"text": "Weekly aband up",
"boundingPolygon": [{"x":538,"y":332},{"x":583,"y":333},{"x":583,"y":339},{"x":538,"y":338}],
"words": [{"text":"Weekly","boundingPolygon":[{"x":539,"y":333},{"x":557,"y":333},{"x":557,"y":339},{"x":539,"y":339}],"confidence":0.575},{"text":"aband","boundingPolygon":[{"x":558,"y":334},{"x":573,"y":334},{"x":573,"y":339},{"x":558,"y":339}],"confidence":0.475},{"text":"up","boundingPolygon":[{"x":574,"y":334},{"x":580,"y":334},{"x":580,"y":339},{"x":574,"y":339}],"confidence":0.865}]
},
{
"text": "12:00 PM-1:00 PM",
"boundingPolygon": [{"x":538,"y":339},{"x":585,"y":339},{"x":585,"y":346},{"x":538,"y":346}],
"words": [{"text":"12:00","boundingPolygon":[{"x":539,"y":339},{"x":553,"y":340},{"x":553,"y":347},{"x":539,"y":346}],"confidence":0.709},{"text":"PM-1:00","boundingPolygon":[{"x":554,"y":340},{"x":575,"y":340},{"x":575,"y":346},{"x":554,"y":347}],"confidence":0.908},{"text":"PM","boundingPolygon":[{"x":576,"y":340},{"x":583,"y":340},{"x":583,"y":346},{"x":576,"y":346}],"confidence":0.998}]
},
{
"text": "Danielle MarchTe",
"boundingPolygon": [{"x":538,"y":346},{"x":583,"y":346},{"x":583,"y":352},{"x":538,"y":352}],
"words": [{"text":"Danielle","boundingPolygon":[{"x":539,"y":347},{"x":559,"y":347},{"x":559,"y":352},{"x":539,"y":353}],"confidence":0.196},{"text":"MarchTe","boundingPolygon":[{"x":560,"y":347},{"x":582,"y":347},{"x":582,"y":352},{"x":560,"y":352}],"confidence":0.571}]
},
{
"text": "Product reviret",
"boundingPolygon": [{"x":537,"y":370},{"x":578,"y":370},{"x":578,"y":375},{"x":537,"y":375}],
"words": [{"text":"Product","boundingPolygon":[{"x":539,"y":370},{"x":559,"y":370},{"x":559,"y":376},{"x":539,"y":375}],"confidence":0.7},{"text":"reviret","boundingPolygon":[{"x":560,"y":370},{"x":578,"y":371},{"x":578,"y":375},{"x":560,"y":376}],"confidence":0.218}]
}
]
}
]
}
}
Sonraki adımlar
Bu hızlı başlangıçta REST API kullanarak temel görüntü analizi çağrıları yapmayı öğrendiniz. Ardından Analysis 4.0 API özellikleri hakkında daha fazla bilgi edinin.
Önkoşullar
- Azure aboneliğiniz ve Azure AI hizmetleri kaynağınızla Vision Studio'da oturum açın. Bu adımla ilgili yardıma ihtiyacınız varsa genel bakışın Başlarken bölümüne bakın.
Resim çözümleme
- Görüntüleri analiz et sekmesini seçin ve Resimlerden ortak etiketleri ayıkla başlıklı paneli seçin.
- Deneme deneyimini kullanmak için bir kaynak seçmeniz ve fiyatlandırma katmanınıza göre kullanım gerekeceğini kabul etmeniz gerekir.
- Kullanılabilir kümeden bir görüntü seçin veya kendi resminizi yükleyin.
- Görüntünüzü seçtikten sonra, algılanan etiketlerin güvenilirlik puanlarıyla birlikte çıkış penceresinde göründüğünü görürsünüz. API çağrısının döndürdüğü JSON çıkışını görmek için JSON sekmesini de seçebilirsiniz.
- Deneme deneyiminin altında, bu özelliği kendi uygulamanızda kullanmaya başlamak için sonraki adımlar yer alır.
Sonraki adımlar
Bu hızlı başlangıçta, temel bir görüntü analizi görevi gerçekleştirmek için Vision Studio'yu kullandınız. Ardından Görüntü Analizi API'sinin özellikleri hakkında daha fazla bilgi edinin.