Aracılığıyla paylaş


TensorBoardJobService Class

TensorBoard job service configuration.

Inheritance
azure.ai.ml.entities._job.job_service.JobServiceBase
TensorBoardJobService

Constructor

TensorBoardJobService(*, endpoint: str | None = None, nodes: Literal['all'] | None = None, status: str | None = None, port: int | None = None, log_dir: str | None = None, properties: Dict[str, str] | None = None, **kwargs: Any)

Keyword-Only Parameters

Name Description
endpoint

The endpoint URL.

port

The port for the endpoint.

nodes
Optional[Literal["all"]]

Indicates whether the service has to run in all nodes.

properties

Additional properties to set on the endpoint.

status

The status of the endpoint.

log_dir

The directory path for the log file.

kwargs

A dictionary of additional configuration parameters.

Examples

Configuring TensorBoardJobService configuration on a command job.


   from azure.ai.ml import command
   from azure.ai.ml.entities import JupyterLabJobService, SshJobService, TensorBoardJobService, VsCodeJobService

   node = command(
       name="interactive-command-job",
       description="description",
       environment="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu:33",
       command="ls",
       compute="testCompute",
       services={
           "my_ssh": SshJobService(),
           "my_tensorboard": TensorBoardJobService(log_dir="~/blog"),
           "my_jupyter_lab": JupyterLabJobService(),
           "my_vscode": VsCodeJobService(),
       },
   )

Variables

Name Description
type
str

Specifies the type of job service. Set automatically to "tensor_board" for this class.

Methods

get
has_key
items
keys
update
values

get

get(key: Any, default: Any | None = None) -> Any

Parameters

Name Description
key
Required
default
Required
Default value: None

has_key

has_key(k: Any) -> bool

Parameters

Name Description
k
Required

items

items() -> list

keys

keys() -> list

update

update(*args: Any, **kwargs: Any) -> None

values

values() -> list