Aracılığıyla paylaş


Output Class

Define an output.

Inheritance
azure.ai.ml.entities._inputs_outputs.base._InputOutputBase
Output

Constructor

Output(*, type: str, path: str | None = None, mode: str | None = None, description: str | None = None, **kwargs: Any)

Keyword-Only Parameters

Name Description
type
str

The type of the data output. Accepted values are 'uri_folder', 'uri_file', 'mltable', 'mlflow_model', 'custom_model', and user-defined types. Defaults to 'uri_folder'.

Default value: uri_folder
path

The remote path where the output should be stored.

mode

The access mode of the data output. Accepted values are

  • 'rw_mount': Read-write mount the data
  • 'upload': Upload the data from the compute target
  • 'direct': Pass in the URI as a string
path_on_compute

The access path of the data output for compute

description

The description of the output.

name
str

The name to be used to register the output as a Data or Model asset. A name can be set without setting a version.

version
str

The version used to register the output as a Data or Model asset. A version can be set only when name is set.

is_control

Determine if the output is a control output.

early_available

Mark the output for early node orchestration.

intellectual_property

Intellectual property associated with the output. It can be an instance of IntellectualProperty or a dictionary that will be used to create an instance.

Examples

Creating a CommandJob with a folder output.


   from azure.ai.ml import Input, Output
   from azure.ai.ml.entities import CommandJob, CommandJobLimits

   command_job = CommandJob(
       code="./src",
       command="python train.py --ss {search_space.ss}",
       inputs={
           "input1": Input(path="trial.csv", mode="ro_mount", description="trial input data"),
           "input_2": Input(
               path="azureml:list_data_v2_test:2", type="uri_folder", description="registered data asset"
           ),
       },
       outputs={"default": Output(path="./foo")},
       compute="trial",
       environment="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu:33",
       limits=CommandJobLimits(timeout=120),
   )

Methods

get
has_key
items
keys
update
values

get

get(key: Any, default: Any | None = None) -> Any

Parameters

Name Description
key
Required
default
Required
Default value: None

has_key

has_key(k: Any) -> bool

Parameters

Name Description
k
Required

items

items() -> list

keys

keys() -> list

update

update(*args: Any, **kwargs: Any) -> None

values

values() -> list