共用方式為


使用文件智慧服務模型

此內容適用於: v4.0 (GA) | 舊版: blue-checkmark勾選記號 v3.1 (GA) blue-checkmark v3.0 (GA)blue-checkmark v2.1 (GA)

此內容適用於: v3.1 (GA) | 最新版本:勾選記號purple-checkmark v4.0 (GA) | 舊版:blue-checkmark v3.0blue-checkmark v2.1

此內容適用於: v3.0 (GA) | 最新版本: 勾選記號purple-checkmark v4.0 (GA)purple-checkmark v3.1 | 舊版: blue-checkmark v2.1

此內容適用於:v2.1最新版本: 勾選記號blue-checkmark v4.0 (GA) |

在本指南中,了解如何將文件智慧服務模型新增至您的應用程式和工作流程。 使用您選擇的程式設計語言 SDK 或 REST API。

Azure AI 文件智慧服務是雲端式 Azure AI 服務,而此服務使用機器學習以從文件中擷取重要文字和結構元素。 當您學習技術時,我們建議您使用免費的服務。 請記住,免費的頁數限制為每個月 500 頁。

選擇下列文件智慧服務模型,從表單和文件中分析及擷取資料和值:

  • prebuilt-read 模型是所有文件智慧服務模型的核心,而且可以偵測行、字組、位置和語言。 版面配置、一般文件、預建和自訂模型全都使用 read 模型做為從文件擷取文字的基礎。

  • prebuilt-layout 模型會從文件和映像中擷取文字和文字位置、資料表、選取標記和結構資訊。 您可以使用版面配置模型搭配啟用選擇性查詢字串參數 features=keyValuePairs 來擷取索引鍵/值組。

  • prebuilt-contract 模型會從契約合約擷取重要資訊。

  • prebuilt-healthInsuranceCard.us 模型會從美國醫療保健卡擷取重要資訊。

  • prebuilt tax document models 模型會擷取美國稅務表格上報告的資訊。

  • prebuilt-invoice 模型會以各種格式和品質從銷售發票擷取重要欄位和明細行項目。 欄位包括手機擷取的影像、掃描的文件和數位 PDF。

  • prebuilt-receipt 模型會擷取印刷和手寫銷售收據的重要資訊。

  • prebuilt-idDocument 模型會擷取美國駕照、國際護照個人資料頁、美國州別識別碼、社會安全卡和永久居民卡的重要資訊。

用戶端程式庫 (英文) | SDK 參考 (英文) | REST API 參考 (部分機器翻譯) | 套件 (英文)| 範例 (英文)|支援的 REST API 版本 (部分機器翻譯)

必要條件

  • Azure 訂用帳戶 - 建立免費帳戶

  • Visual Studio IDE

  • Azure AI 服務或文件智慧服務資源。 建立 single-servicemulti-service。 您可以使用免費定價層 (F0) 來試用服務,之後可升級至付費層以用於實際執行環境。

  • 從您所建立資源的金鑰和端點,將應用程式連線至 Azure 文件智慧服務。

    1. 部署資源之後,請選取 [移至資源]
    2. 在左側導覽功能表中,選取 [金鑰和端點]。
    3. 複製其中一個金鑰和 [端點],以供稍後在本文中使用。

    Azure 入口網站中金鑰與端點位置的螢幕擷取畫面。

  • URL 位置的文件檔案。 在本專案中,您可以使用下表中針對每個功能所提供的範例表單:

    功能 modelID document-url
    Read 模型 prebuilt-read 範例手冊
    版面配置模型 prebuilt-layout 範例預約確認
    W-2 表單模型 prebuilt-tax.us.w2 範例 W-2 表單
    發票模型 prebuilt-invoice 發票範例
    收據模型 prebuilt-receipt 範例收據
    識別碼文件模型 prebuilt-idDocument 範例身分證明文件

設定環境變數

若要與此文件智慧服務互動,您必須建立 DocumentAnalysisClient 類別的執行個體。 若要這樣做,請使用 keyendpoint 以從 Azure 入口網站將用戶端具現化。 在此專案中,使用環境變數來儲存和存取認證。

重要

如果您使用 API 金鑰,請將其安全地儲存在別處,例如 Azure Key Vault。 請勿在程式碼中直接包含 API 金鑰,且切勿公開張貼金鑰。

如需 AI 服務安全性的詳細資訊,請參閱驗證對 Azure AI 服務的要求

若要設定文件智慧服務資源金鑰的環境變數,請開啟主控台視窗,並遵循作業系統和開發環境的指示進行。 將 <yourKey><yourEndpoint> 取代為 Azure 入口網站中資源的值。

Windows 中的環境變數不區分大小寫。 這些變數通常會以大寫方式宣告,並加上底線聯結的字組。 在命令提示字元中,執行下列命令:

  1. 設定金鑰變數:

    setx DI_KEY <yourKey>
    
  2. 設定端點變數

    setx DI_ENDPOINT <yourEndpoint>
    
  3. 設定環境變數之後,請關閉 [命令提示字元] 視窗。 值會維持不變,直到您再次變更這些值為止。

  4. 重新啟動任何讀取環境變數的執行中程式。 例如,如果您使用 Visual Studio 或 Visual Studio Code 作為編輯器,則請在執行範例程式碼之前重新啟動。

以下是一些更實用的命令,可與環境變數搭配使用:

Command 動作 範例
setx VARIABLE_NAME= 將值設定為空字串,以刪除環境變數。 setx DI_KEY=
setx VARIABLE_NAME=value 設定或變更環境變數的值。 setx DI_KEY=<yourKey>
set VARIABLE_NAME 顯示特定環境變數的值。 set DI_KEY
set 顯示所有環境變數。 set

設定程式設計環境

  1. 啟動 Visual Studio。

  2. 在開始頁面中,選擇 [建立新的專案]

    Visual Studio 開始視窗之螢幕擷取畫面。

  3. 在 [建立新的專案] 頁面的搜尋方塊中,輸入主控台。 選取 [主控台應用程式] 範本,然後選擇 [下一步]

    Visual Studio 的建立新專案頁面之螢幕擷取畫面。

  4. 在 [設定新專案] 頁面中,於 [專案名稱] 底下輸入 docIntelligence_app。 然後選取下一步

    Visual Studio 設定新專案頁面的螢幕擷取畫面。

  5. 在 [其他資訊] 頁面中,選取 [.NET 8.0 (長期支援)],然後選取 [建立]

    Visual Studio 的其他資訊頁面螢幕擷取畫面。

使用 NuGet 安裝用戶端程式庫

  1. 以滑鼠右鍵按一下您的 docIntelligence_app 專案,然後選取 [管理 NuGet 套件...]

    Visual Studio 中選取 NuGet 套件視窗的螢幕擷取畫面。

  2. 選取 [瀏覽] 索引標籤,然後輸入 [Azure.AI.FormRecognizer]

  3. 選取 Include prerelease 核取方塊。

    Visual Studio 中選取發行前版本 NuGet 套件的螢幕擷取畫面。

  4. 從下拉式功能表中選擇版本,並在專案中安裝套件。

建置您的 應用程式

注意

從 .NET 6 開始,使用 console 範本的新專案會產生與舊版不同的新程式樣式。 新輸出會使用最新的 C# 功能,以簡化您需要撰寫的程式碼。

當您使用較新版本時,只需要撰寫 Main 方法的本文。 您不需要包含最上層陳述式、全域 Using 指示詞或隱含 Using 指示詞。 如需詳細資訊,請參閱 C# 主控台應用程式範本可產生最上層陳述式

  1. 開啟 Program.cs 檔案。

  2. 刪除預先存在的程式碼,包含此行 Console.Writeline("Hello World!")

  3. 選取下列其中一個程式碼範例,然後複製並貼上您應用程式中的 Program.cs 檔案:

  4. 將程式碼範例新增至應用程式之後,請選擇專案名稱旁的綠色 [開始] 按鈕來建置和執行程式,或按 F5

    執行您的 Visual Studio 程式之螢幕擷取畫面。

使用讀取模型

using Azure;
using Azure.AI.DocumentIntelligence;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentIntelligenceClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentIntelligenceClient client = new DocumentIntelligenceClient(new Uri(endpoint), credential);

//sample document
Uri fileUri = new Uri("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/read.png");

Operation<AnalyzeResult> operation = await client.AnalyzeDocumentAsync(WaitUntil.Completed, "prebuilt-read", fileUri);
AnalyzeResult result = operation.Value;

foreach (DocumentPage page in result.Pages)
{
    Console.WriteLine($"Document Page {page.PageNumber} has {page.Lines.Count} line(s), {page.Words.Count} word(s),");
    Console.WriteLine($"and {page.SelectionMarks.Count} selection mark(s).");

    for (int i = 0; i < page.Lines.Count; i++)
    {
        DocumentLine line = page.Lines[i];
        Console.WriteLine($"  Line {i} has content: '{line.Content}'.");

        Console.WriteLine($"    Its bounding polygon (points ordered clockwise):");

        for (int j = 0; j < line.BoundingPolygon.Count; j++)
        {
            Console.WriteLine($"      Point {j} => X: {line.BoundingPolygon[j].X}, Y: {line.BoundingPolygon[j].Y}");
        }
    }
}

foreach (DocumentStyle style in result.Styles)
{
    // Check the style and style confidence to see if text is handwritten.
    // Note that value '0.8' is used as an example.

    bool isHandwritten = style.IsHandwritten.HasValue && style.IsHandwritten == true;

    if (isHandwritten && style.Confidence > 0.8)
    {
        Console.WriteLine($"Handwritten content found:");

        foreach (DocumentSpan span in style.Spans)
        {
            Console.WriteLine($"  Content: {result.Content.Substring(span.Index, span.Length)}");
        }
    }
}

Console.WriteLine("Detected languages:");

foreach (DocumentLanguage language in result.Languages)
{
    Console.WriteLine($"  Found language with locale'{language.Locale}' with confidence {language.Confidence}.");
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視read模型輸出

使用版面配置模型

using Azure;
using Azure.AI.DocumentIntelligence;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentIntelligenceClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentIntelligenceClient client = new DocumentIntelligenceClient(new Uri(endpoint), credential);

// sample document document
Uri fileUri = new Uri ("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/layout.png");

Operation<AnalyzeResult> operation = await client.AnalyzeDocumentAsync(WaitUntil.Completed, "prebuilt-layout", fileUri);

AnalyzeResult result = operation.Value;

foreach (DocumentPage page in result.Pages)
{
    Console.WriteLine($"Document Page {page.PageNumber} has {page.Lines.Count} line(s), {page.Words.Count} word(s),");
    Console.WriteLine($"and {page.SelectionMarks.Count} selection mark(s).");

    for (int i = 0; i < page.Lines.Count; i++)
    {
        DocumentLine line = page.Lines[i];
        Console.WriteLine($"  Line {i} has content: '{line.Content}'.");

        Console.WriteLine($"    Its bounding polygon (points ordered clockwise):");

        for (int j = 0; j < line.BoundingPolygon.Count; j++)
        {
            Console.WriteLine($"      Point {j} => X: {line.BoundingPolygon[j].X}, Y: {line.BoundingPolygon[j].Y}");
        }
    }

    for (int i = 0; i < page.SelectionMarks.Count; i++)
    {
        DocumentSelectionMark selectionMark = page.SelectionMarks[i];

        Console.WriteLine($"  Selection Mark {i} is {selectionMark.State}.");
        Console.WriteLine($"    Its bounding polygon (points ordered clockwise):");

        for (int j = 0; j < selectionMark.BoundingPolygon.Count; j++)
        {
            Console.WriteLine($"      Point {j} => X: {selectionMark.BoundingPolygon[j].X}, Y: {selectionMark.BoundingPolygon[j].Y}");
        }
    }
}

Console.WriteLine("Paragraphs:");

foreach (DocumentParagraph paragraph in result.Paragraphs)
{
    Console.WriteLine($"  Paragraph content: {paragraph.Content}");

    if (paragraph.Role != null)
    {
        Console.WriteLine($"    Role: {paragraph.Role}");
    }
}

foreach (DocumentStyle style in result.Styles)
{
    // Check the style and style confidence to see if text is handwritten.
    // Note that value '0.8' is used as an example.

    bool isHandwritten = style.IsHandwritten.HasValue && style.IsHandwritten == true;

    if (isHandwritten && style.Confidence > 0.8)
    {
        Console.WriteLine($"Handwritten content found:");

        foreach (DocumentSpan span in style.Spans)
        {
            Console.WriteLine($"  Content: {result.Content.Substring(span.Index, span.Length)}");
        }
    }
}

Console.WriteLine("The following tables were extracted:");

for (int i = 0; i < result.Tables.Count; i++)
{
    DocumentTable table = result.Tables[i];
    Console.WriteLine($"  Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");

    foreach (DocumentTableCell cell in table.Cells)
    {
        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) has kind '{cell.Kind}' and content: '{cell.Content}'.");
    }
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視版面配置模型輸出

請使用一般文件模型

using Azure;
using Azure.AI.DocumentIntelligence;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentIntelligenceClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentIntelligenceClient client = new DocumentIntelligenceClient(new Uri(endpoint), credential);

// sample document document
Uri fileUri = new Uri("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/sample-layout.pdf");

Operation<AnalyzeResult> operation = await client.AnalyzeDocumentAsync(WaitUntil.Completed, "prebuilt-document", fileUri);

AnalyzeResult result = operation.Value;

Console.WriteLine("Detected key-value pairs:");

foreach (DocumentKeyValuePair kvp in result.KeyValuePairs)
{
    if (kvp.Value == null)
    {
        Console.WriteLine($"  Found key with no value: '{kvp.Key.Content}'");
    }
    else
    {
        Console.WriteLine($"  Found key-value pair: '{kvp.Key.Content}' and '{kvp.Value.Content}'");
    }
}

foreach (DocumentPage page in result.Pages)
{
    Console.WriteLine($"Document Page {page.PageNumber} has {page.Lines.Count} line(s), {page.Words.Count} word(s),");
    Console.WriteLine($"and {page.SelectionMarks.Count} selection mark(s).");

    for (int i = 0; i < page.Lines.Count; i++)
    {
        DocumentLine line = page.Lines[i];
        Console.WriteLine($"  Line {i} has content: '{line.Content}'.");

        Console.WriteLine($"    Its bounding polygon (points ordered clockwise):");

        for (int j = 0; j < line.BoundingPolygon.Count; j++)
        {
            Console.WriteLine($"      Point {j} => X: {line.BoundingPolygon[j].X}, Y: {line.BoundingPolygon[j].Y}");
        }
    }

    for (int i = 0; i < page.SelectionMarks.Count; i++)
    {
        DocumentSelectionMark selectionMark = page.SelectionMarks[i];

        Console.WriteLine($"  Selection Mark {i} is {selectionMark.State}.");
        Console.WriteLine($"    Its bounding polygon (points ordered clockwise):");

        for (int j = 0; j < selectionMark.BoundingPolygon.Count; j++)
        {
            Console.WriteLine($"      Point {j} => X: {selectionMark.BoundingPolygon[j].X}, Y: {selectionMark.BoundingPolygon[j].Y}");
        }
    }
}

foreach (DocumentStyle style in result.Styles)
{
    // Check the style and style confidence to see if text is handwritten.
    // Note that value '0.8' is used as an example.

    bool isHandwritten = style.IsHandwritten.HasValue && style.IsHandwritten == true;

    if (isHandwritten && style.Confidence > 0.8)
    {
        Console.WriteLine($"Handwritten content found:");

        foreach (DocumentSpan span in style.Spans)
        {
            Console.WriteLine($"  Content: {result.Content.Substring(span.Index, span.Length)}");
        }
    }
}

Console.WriteLine("The following tables were extracted:");

for (int i = 0; i < result.Tables.Count; i++)
{
    DocumentTable table = result.Tables[i];
    Console.WriteLine($"  Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");

    foreach (DocumentTableCell cell in table.Cells)
    {
        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) has kind '{cell.Kind}' and content: '{cell.Content}'.");
    }
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視一般文件模型輸出

使用 W-2 稅務模型


using Azure;
using Azure.AI.DocumentIntelligence;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentIntelligenceClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentIntelligenceClient client = new DocumentIntelligenceClient(new Uri(endpoint), credential);

// sample document document
Uri w2Uri = new Uri("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/w2.png");

Operation<AnalyzeResult> operation = await client.AnalyzeDocumentAsync(WaitUntil.Completed, "prebuilt-tax.us.w2", w2Uri);

AnalyzeResult result = operation.Value;

for (int i = 0; i < result.Documents.Count; i++)
{
    Console.WriteLine($"Document {i}:");

    AnalyzedDocument document = result.Documents[i];

    if (document.Fields.TryGetValue("AdditionalInfo", out DocumentField? additionalInfoField))
    {
        if (additionalInfoField.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField infoField in additionalInfoField.Value.AsList())
            {
                Console.WriteLine("AdditionalInfo:");

                if (infoField.FieldType == DocumentFieldType.Dictionary)
                {
                    IReadOnlyDictionary<string, DocumentField> infoFields = infoField.Value.AsDictionary();

                    if (infoFields.TryGetValue("Amount", out DocumentField? amountField))
                    {
                        if (amountField.FieldType == DocumentFieldType.Double)
                        {
                            double amount = amountField.Value.AsDouble();

                            Console.WriteLine($"  Amount: '{amount}', with confidence {amountField.Confidence}");
                        }
                    }

                    if (infoFields.TryGetValue("LetterCode", out DocumentField? letterCodeField))
                    {
                        if (letterCodeField.FieldType == DocumentFieldType.String)
                        {
                            string letterCode = letterCodeField.Value.AsString();

                            Console.WriteLine($"  LetterCode: '{letterCode}', with confidence {letterCodeField.Confidence}");
                        }
                    }
                }
            }
        }
    }


    if (document.Fields.TryGetValue("AllocatedTips", out DocumentField? allocatedTipsField))
    {
        if (allocatedTipsField.FieldType == DocumentFieldType.Double)
        {
            double allocatedTips = allocatedTipsField.Value.AsDouble();
            Console.WriteLine($"Allocated Tips: '{allocatedTips}', with confidence {allocatedTipsField.Confidence}");
        }
    }

    if (document.Fields.TryGetValue("Employer", out DocumentField? employerField))
    {
        if (employerField.FieldType == DocumentFieldType.Dictionary)
        {
            IReadOnlyDictionary<string, DocumentField> employerFields = employerField.Value.AsDictionary();

            if (employerFields.TryGetValue("Name", out DocumentField? employerNameField))
            {
                if (employerNameField.FieldType == DocumentFieldType.String)
                {
                    string name = employerNameField.Value.AsString();

                    Console.WriteLine($"Employer Name: '{name}', with confidence {employerNameField.Confidence}");
                }
            }

            if (employerFields.TryGetValue("IdNumber", out DocumentField? idNumberField))
            {
                if (idNumberField.FieldType == DocumentFieldType.String)
                {
                    string id = idNumberField.Value.AsString();

                    Console.WriteLine($"Employer ID Number: '{id}', with confidence {idNumberField.Confidence}");
                }
            }

            if (employerFields.TryGetValue("Address", out DocumentField? addressField))
            {
                if (addressField.FieldType == DocumentFieldType.Address)
                {
                    Console.WriteLine($"Employer Address: '{addressField.Content}', with confidence {addressField.Confidence}");
                }
            }
        }
    }
}

請造訪 GitHub 上的 Azure 範例存放庫,以檢視 W-2 稅務模型輸出

使用發票模型

using Azure;
using Azure.AI.DocumentIntelligence;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentIntelligenceClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentIntelligenceClient client = new DocumentIntelligenceClient(new Uri(endpoint), credential);

// sample document document
Uri invoiceUri = new Uri("https://github.com/Azure-Samples/cognitive-services-REST-api-samples/raw/master/curl/form-recognizer/rest-api/invoice.pdf");

Operation<AnalyzeResult> operation = await client.AnalyzeDocumentAsync(WaitUntil.Completed, "prebuilt-invoice", invoiceUri);

AnalyzeResult result = operation.Value;

for (int i = 0; i < result.Documents.Count; i++)
{
    Console.WriteLine($"Document {i}:");

    AnalyzedDocument document = result.Documents[i];

    if (document.Fields.TryGetValue("VendorName", out DocumentField vendorNameField))
    {
        if (vendorNameField.FieldType == DocumentFieldType.String)
        {
            string vendorName = vendorNameField.Value.AsString();
            Console.WriteLine($"Vendor Name: '{vendorName}', with confidence {vendorNameField.Confidence}");
        }
    }

    if (document.Fields.TryGetValue("CustomerName", out DocumentField customerNameField))
    {
        if (customerNameField.FieldType == DocumentFieldType.String)
        {
            string customerName = customerNameField.Value.AsString();
            Console.WriteLine($"Customer Name: '{customerName}', with confidence {customerNameField.Confidence}");
        }
    }

    if (document.Fields.TryGetValue("Items", out DocumentField itemsField))
    {
        if (itemsField.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField itemField in itemsField.Value.AsList())
            {
                Console.WriteLine("Item:");

                if (itemField.FieldType == DocumentFieldType.Dictionary)
                {
                    IReadOnlyDictionary<string, DocumentField> itemFields = itemField.Value.AsDictionary();

                    if (itemFields.TryGetValue("Description", out DocumentField itemDescriptionField))
                    {
                        if (itemDescriptionField.FieldType == DocumentFieldType.String)
                        {
                            string itemDescription = itemDescriptionField.Value.AsString();

                            Console.WriteLine($"  Description: '{itemDescription}', with confidence {itemDescriptionField.Confidence}");
                        }
                    }

                    if (itemFields.TryGetValue("Amount", out DocumentField itemAmountField))
                    {
                        if (itemAmountField.FieldType == DocumentFieldType.Currency)
                        {
                            CurrencyValue itemAmount = itemAmountField.Value.AsCurrency();

                            Console.WriteLine($"  Amount: '{itemAmount.Symbol}{itemAmount.Amount}', with confidence {itemAmountField.Confidence}");
                        }
                    }
                }
            }
        }
    }

    if (document.Fields.TryGetValue("SubTotal", out DocumentField subTotalField))
    {
        if (subTotalField.FieldType == DocumentFieldType.Currency)
        {
            CurrencyValue subTotal = subTotalField.Value.AsCurrency();
            Console.WriteLine($"Sub Total: '{subTotal.Symbol}{subTotal.Amount}', with confidence {subTotalField.Confidence}");
        }
    }

    if (document.Fields.TryGetValue("TotalTax", out DocumentField totalTaxField))
    {
        if (totalTaxField.FieldType == DocumentFieldType.Currency)
        {
            CurrencyValue totalTax = totalTaxField.Value.AsCurrency();
            Console.WriteLine($"Total Tax: '{totalTax.Symbol}{totalTax.Amount}', with confidence {totalTaxField.Confidence}");
        }
    }

    if (document.Fields.TryGetValue("InvoiceTotal", out DocumentField invoiceTotalField))
    {
        if (invoiceTotalField.FieldType == DocumentFieldType.Currency)
        {
            CurrencyValue invoiceTotal = invoiceTotalField.Value.AsCurrency();
            Console.WriteLine($"Invoice Total: '{invoiceTotal.Symbol}{invoiceTotal.Amount}', with confidence {invoiceTotalField.Confidence}");
        }
    }
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視發票模型輸出

使用收據模型


using Azure;
using Azure.AI.DocumentIntelligence;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentIntelligenceClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentIntelligenceClient client = new DocumentIntelligenceClient(new Uri(endpoint), credential);

// sample document document
Uri receiptUri = new Uri("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/receipt.png");

Operation<AnalyzeResult> operation = await client.AnalyzeDocumentAsync(WaitUntil.Completed, "prebuilt-receipt", receiptUri);

AnalyzeResult receipts = operation.Value;

foreach (AnalyzedDocument receipt in receipts.Documents)
{
    if (receipt.Fields.TryGetValue("MerchantName", out DocumentField merchantNameField))
    {
        if (merchantNameField.FieldType == DocumentFieldType.String)
        {
            string merchantName = merchantNameField.Value.AsString();

            Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
        }
    }

    if (receipt.Fields.TryGetValue("TransactionDate", out DocumentField transactionDateField))
    {
        if (transactionDateField.FieldType == DocumentFieldType.Date)
        {
            DateTimeOffset transactionDate = transactionDateField.Value.AsDate();

            Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
        }
    }

    if (receipt.Fields.TryGetValue("Items", out DocumentField itemsField))
    {
        if (itemsField.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField itemField in itemsField.Value.AsList())
            {
                Console.WriteLine("Item:");

                if (itemField.FieldType == DocumentFieldType.Dictionary)
                {
                    IReadOnlyDictionary<string, DocumentField> itemFields = itemField.Value.AsDictionary();

                    if (itemFields.TryGetValue("Description", out DocumentField itemDescriptionField))
                    {
                        if (itemDescriptionField.FieldType == DocumentFieldType.String)
                        {
                            string itemDescription = itemDescriptionField.Value.AsString();

                            Console.WriteLine($"  Description: '{itemDescription}', with confidence {itemDescriptionField.Confidence}");
                        }
                    }

                    if (itemFields.TryGetValue("TotalPrice", out DocumentField itemTotalPriceField))
                    {
                        if (itemTotalPriceField.FieldType == DocumentFieldType.Double)
                        {
                            double itemTotalPrice = itemTotalPriceField.Value.AsDouble();

                            Console.WriteLine($"  Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                        }
                    }
                }
            }
        }
    }

    if (receipt.Fields.TryGetValue("Total", out DocumentField totalField))
    {
        if (totalField.FieldType == DocumentFieldType.Double)
        {
            double total = totalField.Value.AsDouble();

            Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
        }
    }
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視收據模型輸出

使用身分證明文件模型


using Azure;
using Azure.AI.DocumentIntelligence;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentIntelligenceClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentIntelligenceClient client = new DocumentIntelligenceClient(new Uri(endpoint), credential);

// sample document document

Uri idDocumentUri = new Uri("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/identity_documents.png");

Operation<AnalyzeResult> operation = await client.AnalyzeDocumentAsync(WaitUntil.Completed, "prebuilt-idDocument", idDocumentUri);

AnalyzeResult identityDocuments = operation.Value;

AnalyzedDocument identityDocument = identityDocuments.Documents.Single();

if (identityDocument.Fields.TryGetValue("Address", out DocumentField addressField))
{
    if (addressField.FieldType == DocumentFieldType.String)
    {
        string address = addressField.Value. AsString();
        Console.WriteLine($"Address: '{address}', with confidence {addressField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("CountryRegion", out DocumentField countryRegionField))
{
    if (countryRegionField.FieldType == DocumentFieldType.CountryRegion)
    {
        string countryRegion = countryRegionField.Value.AsCountryRegion();
        Console.WriteLine($"CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("DateOfBirth", out DocumentField dateOfBirthField))
{
    if (dateOfBirthField.FieldType == DocumentFieldType.Date)
    {
        DateTimeOffset dateOfBirth = dateOfBirthField.Value.AsDate();
        Console.WriteLine($"Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("DateOfExpiration", out DocumentField dateOfExpirationField))
{
    if (dateOfExpirationField.FieldType == DocumentFieldType.Date)
    {
        DateTimeOffset dateOfExpiration = dateOfExpirationField.Value.AsDate();
        Console.WriteLine($"Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("DocumentNumber", out DocumentField documentNumberField))
{
    if (documentNumberField.FieldType == DocumentFieldType.String)
    {
        string documentNumber = documentNumberField.Value.AsString();
        Console.WriteLine($"Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("FirstName", out DocumentField firstNameField))
{
    if (firstNameField.FieldType == DocumentFieldType.String)
    {
        string firstName = firstNameField.Value.AsString();
        Console.WriteLine($"First Name: '{firstName}', with confidence {firstNameField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("LastName", out DocumentField lastNameField))
{
    if (lastNameField.FieldType == DocumentFieldType.String)
    {
        string lastName = lastNameField.Value.AsString();
        Console.WriteLine($"Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("Region", out DocumentField regionfield))
{
    if (regionfield.FieldType == DocumentFieldType.String)
    {
        string region = regionfield.Value.AsString();
        Console.WriteLine($"Region: '{region}', with confidence {regionfield.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("Sex", out DocumentField sexfield))
{
    if (sexfield.FieldType == DocumentFieldType.String)
    {
        string sex = sexfield.Value.AsString();
        Console.WriteLine($"Sex: '{sex}', with confidence {sexfield.Confidence}");
    }
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視 id-document 模型輸出

用戶端程式庫 (英文) | SDK 參考 (英文) | REST API 參考 (部分機器翻譯) | 套件 (英文) | 範例 (英文) |支援的 REST API 版本

必要條件

  • Azure 訂用帳戶 - 建立免費帳戶

  • Visual Studio IDE

  • Azure AI 服務或文件智慧服務資源。 建立 single-servicemulti-service。 您可以使用免費定價層 (F0) 來試用服務,之後可升級至付費層以用於實際執行環境。

  • 從您所建立資源的金鑰和端點,將應用程式連線至 Azure 文件智慧服務。

    1. 部署資源之後,請選取 [移至資源]
    2. 在左側導覽功能表中,選取 [金鑰和端點]。
    3. 複製其中一個金鑰和 [端點],以供稍後在本文中使用。

    Azure 入口網站中金鑰與端點位置的螢幕擷取畫面。

  • URL 位置的文件檔案。 在本專案中,您可以使用下表中針對每個功能所提供的範例表單:

    功能 modelID document-url
    Read 模型 prebuilt-read 範例手冊
    版面配置模型 prebuilt-layout 範例預約確認
    W-2 表單模型 prebuilt-tax.us.w2 範例 W-2 表單
    發票模型 prebuilt-invoice 發票範例
    收據模型 prebuilt-receipt 範例收據
    識別碼文件模型 prebuilt-idDocument 範例身分證明文件
    名片模型 prebuilt-businessCard 範例名片

設定環境變數

若要與此文件智慧服務互動,您必須建立 DocumentAnalysisClient 類別的執行個體。 若要這樣做,請使用 keyendpoint 以從 Azure 入口網站將用戶端具現化。 在此專案中,使用環境變數來儲存和存取認證。

重要

如果您使用 API 金鑰,請將其安全地儲存在別處,例如 Azure Key Vault。 請勿在程式碼中直接包含 API 金鑰,且切勿公開張貼金鑰。

如需 AI 服務安全性的詳細資訊,請參閱驗證對 Azure AI 服務的要求

若要設定文件智慧服務資源金鑰的環境變數,請開啟主控台視窗,並遵循作業系統和開發環境的指示進行。 將 <yourKey><yourEndpoint> 取代為 Azure 入口網站中資源的值。

Windows 中的環境變數不區分大小寫。 這些變數通常會以大寫方式宣告,並加上底線聯結的字組。 在命令提示字元中,執行下列命令:

  1. 設定金鑰變數:

    setx DI_KEY <yourKey>
    
  2. 設定端點變數

    setx DI_ENDPOINT <yourEndpoint>
    
  3. 設定環境變數之後,請關閉 [命令提示字元] 視窗。 值會維持不變,直到您再次變更這些值為止。

  4. 重新啟動任何讀取環境變數的執行中程式。 例如,如果您使用 Visual Studio 或 Visual Studio Code 作為編輯器,則請在執行範例程式碼之前重新啟動。

以下是一些更實用的命令,可與環境變數搭配使用:

Command 動作 範例
setx VARIABLE_NAME= 將值設定為空字串,以刪除環境變數。 setx DI_KEY=
setx VARIABLE_NAME=value 設定或變更環境變數的值。 setx DI_KEY=<yourKey>
set VARIABLE_NAME 顯示特定環境變數的值。 set DI_KEY
set 顯示所有環境變數。 set

設定程式設計環境

  1. 啟動 Visual Studio。

  2. 在開始頁面中,選擇 [建立新的專案]

    Visual Studio 開始視窗之螢幕擷取畫面。

  3. 在 [建立新的專案] 頁面的搜尋方塊中,輸入主控台。 選取 [主控台應用程式] 範本,然後選擇 [下一步]

    Visual Studio 的建立新專案頁面之螢幕擷取畫面。

  4. 在 [設定新專案] 頁面中,於 [專案名稱] 底下輸入 docIntelligence_app。 然後選取下一步

    Visual Studio 設定新專案頁面的螢幕擷取畫面。

  5. 在 [其他資訊] 頁面中,選取 [.NET 8.0 (長期支援)],然後選取 [建立]

    Visual Studio 的其他資訊頁面螢幕擷取畫面。

使用 NuGet 安裝用戶端程式庫

  1. 以滑鼠右鍵按一下您的 docIntelligence_app 專案,然後選取 [管理 NuGet 套件...]

    Visual Studio 中選取 NuGet 套件視窗的螢幕擷取畫面。

  2. 選取 [瀏覽] 索引標籤,然後輸入 [Azure.AI.FormRecognizer]

    Visual Studio 中選取發行前版本 NuGet 套件的螢幕擷取畫面。

  3. 從下拉式功能表中選取版本,並在專案中安裝套件。

建置您的 應用程式

注意

從 .NET 6 開始,使用 console 範本的新專案會產生與舊版不同的新程式樣式。 新輸出會使用最新的 C# 功能,以簡化您需要撰寫的程式碼。

當您使用較新版本時,只需要撰寫 Main 方法的本文。 您不需要包含最上層陳述式、全域 Using 指示詞或隱含 Using 指示詞。 如需詳細資訊,請參閱 C# 主控台應用程式範本可產生最上層陳述式

  1. 開啟 Program.cs 檔案。

  2. 刪除現有的程式碼,包含此行 Console.Writeline("Hello World!")

  3. 選取下列其中一個程式碼範例,然後複製並貼上您應用程式中的 Program.cs 檔案:

  4. 將程式碼範例新增至應用程式之後,請選擇專案名稱旁的綠色 [開始] 按鈕來建置和執行程式,或按 F5

    執行您的 Visual Studio 程式之螢幕擷取畫面。

使用讀取模型

using Azure;
using Azure.AI.FormRecognizer.DocumentAnalysis;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentAnalysisClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentAnalysisClient client = new DocumentAnalysisClient(new Uri(endpoint), credential);

//sample document
Uri fileUri = new Uri("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/read.png");

AnalyzeDocumentOperation operation = await client.AnalyzeDocumentFromUriAsync(WaitUntil.Completed, "prebuilt-read", fileUri);
AnalyzeResult result = operation.Value;

foreach (DocumentPage page in result.Pages)
{
    Console.WriteLine($"Document Page {page.PageNumber} has {page.Lines.Count} line(s), {page.Words.Count} word(s),");
    Console.WriteLine($"and {page.SelectionMarks.Count} selection mark(s).");

    for (int i = 0; i < page.Lines.Count; i++)
    {
        DocumentLine line = page.Lines[i];
        Console.WriteLine($"  Line {i} has content: '{line.Content}'.");

        Console.WriteLine($"    Its bounding polygon (points ordered clockwise):");

        for (int j = 0; j < line.BoundingPolygon.Count; j++)
        {
            Console.WriteLine($"      Point {j} => X: {line.BoundingPolygon[j].X}, Y: {line.BoundingPolygon[j].Y}");
        }
    }
}

foreach (DocumentStyle style in result.Styles)
{
    // Check the style and style confidence to see if text is handwritten.
    // Note that value '0.8' is used as an example.

    bool isHandwritten = style.IsHandwritten.HasValue && style.IsHandwritten == true;

    if (isHandwritten && style.Confidence > 0.8)
    {
        Console.WriteLine($"Handwritten content found:");

        foreach (DocumentSpan span in style.Spans)
        {
            Console.WriteLine($"  Content: {result.Content.Substring(span.Index, span.Length)}");
        }
    }
}

Console.WriteLine("Detected languages:");

foreach (DocumentLanguage language in result.Languages)
{
    Console.WriteLine($"  Found language with locale'{language.Locale}' with confidence {language.Confidence}.");
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視read模型輸出

使用版面配置模型

using Azure;
using Azure.AI.FormRecognizer.DocumentAnalysis;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentAnalysisClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentAnalysisClient client = new DocumentAnalysisClient(new Uri(endpoint), credential);

// sample document document
Uri fileUri = new Uri ("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/layout.png");

AnalyzeDocumentOperation operation = await client.AnalyzeDocumentFromUriAsync(WaitUntil.Completed, "prebuilt-layout", fileUri);

AnalyzeResult result = operation.Value;

foreach (DocumentPage page in result.Pages)
{
    Console.WriteLine($"Document Page {page.PageNumber} has {page.Lines.Count} line(s), {page.Words.Count} word(s),");
    Console.WriteLine($"and {page.SelectionMarks.Count} selection mark(s).");

    for (int i = 0; i < page.Lines.Count; i++)
    {
        DocumentLine line = page.Lines[i];
        Console.WriteLine($"  Line {i} has content: '{line.Content}'.");

        Console.WriteLine($"    Its bounding polygon (points ordered clockwise):");

        for (int j = 0; j < line.BoundingPolygon.Count; j++)
        {
            Console.WriteLine($"      Point {j} => X: {line.BoundingPolygon[j].X}, Y: {line.BoundingPolygon[j].Y}");
        }
    }

    for (int i = 0; i < page.SelectionMarks.Count; i++)
    {
        DocumentSelectionMark selectionMark = page.SelectionMarks[i];

        Console.WriteLine($"  Selection Mark {i} is {selectionMark.State}.");
        Console.WriteLine($"    Its bounding polygon (points ordered clockwise):");

        for (int j = 0; j < selectionMark.BoundingPolygon.Count; j++)
        {
            Console.WriteLine($"      Point {j} => X: {selectionMark.BoundingPolygon[j].X}, Y: {selectionMark.BoundingPolygon[j].Y}");
        }
    }
}

Console.WriteLine("Paragraphs:");

foreach (DocumentParagraph paragraph in result.Paragraphs)
{
    Console.WriteLine($"  Paragraph content: {paragraph.Content}");

    if (paragraph.Role != null)
    {
        Console.WriteLine($"    Role: {paragraph.Role}");
    }
}

foreach (DocumentStyle style in result.Styles)
{
    // Check the style and style confidence to see if text is handwritten.
    // Note that value '0.8' is used as an example.

    bool isHandwritten = style.IsHandwritten.HasValue && style.IsHandwritten == true;

    if (isHandwritten && style.Confidence > 0.8)
    {
        Console.WriteLine($"Handwritten content found:");

        foreach (DocumentSpan span in style.Spans)
        {
            Console.WriteLine($"  Content: {result.Content.Substring(span.Index, span.Length)}");
        }
    }
}

Console.WriteLine("The following tables were extracted:");

for (int i = 0; i < result.Tables.Count; i++)
{
    DocumentTable table = result.Tables[i];
    Console.WriteLine($"  Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");

    foreach (DocumentTableCell cell in table.Cells)
    {
        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) has kind '{cell.Kind}' and content: '{cell.Content}'.");
    }
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視版面配置模型輸出

請使用一般文件模型

using Azure;
using Azure.AI.FormRecognizer.DocumentAnalysis;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentAnalysisClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentAnalysisClient client = new DocumentAnalysisClient(new Uri(endpoint), credential);

// sample document document
Uri fileUri = new Uri("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/sample-layout.pdf");

AnalyzeDocumentOperation operation = await client.AnalyzeDocumentFromUriAsync(WaitUntil.Completed, "prebuilt-document", fileUri);

AnalyzeResult result = operation.Value;

Console.WriteLine("Detected key-value pairs:");

foreach (DocumentKeyValuePair kvp in result.KeyValuePairs)
{
    if (kvp.Value == null)
    {
        Console.WriteLine($"  Found key with no value: '{kvp.Key.Content}'");
    }
    else
    {
        Console.WriteLine($"  Found key-value pair: '{kvp.Key.Content}' and '{kvp.Value.Content}'");
    }
}

foreach (DocumentPage page in result.Pages)
{
    Console.WriteLine($"Document Page {page.PageNumber} has {page.Lines.Count} line(s), {page.Words.Count} word(s),");
    Console.WriteLine($"and {page.SelectionMarks.Count} selection mark(s).");

    for (int i = 0; i < page.Lines.Count; i++)
    {
        DocumentLine line = page.Lines[i];
        Console.WriteLine($"  Line {i} has content: '{line.Content}'.");

        Console.WriteLine($"    Its bounding polygon (points ordered clockwise):");

        for (int j = 0; j < line.BoundingPolygon.Count; j++)
        {
            Console.WriteLine($"      Point {j} => X: {line.BoundingPolygon[j].X}, Y: {line.BoundingPolygon[j].Y}");
        }
    }

    for (int i = 0; i < page.SelectionMarks.Count; i++)
    {
        DocumentSelectionMark selectionMark = page.SelectionMarks[i];

        Console.WriteLine($"  Selection Mark {i} is {selectionMark.State}.");
        Console.WriteLine($"    Its bounding polygon (points ordered clockwise):");

        for (int j = 0; j < selectionMark.BoundingPolygon.Count; j++)
        {
            Console.WriteLine($"      Point {j} => X: {selectionMark.BoundingPolygon[j].X}, Y: {selectionMark.BoundingPolygon[j].Y}");
        }
    }
}

foreach (DocumentStyle style in result.Styles)
{
    // Check the style and style confidence to see if text is handwritten.
    // Note that value '0.8' is used as an example.

    bool isHandwritten = style.IsHandwritten.HasValue && style.IsHandwritten == true;

    if (isHandwritten && style.Confidence > 0.8)
    {
        Console.WriteLine($"Handwritten content found:");

        foreach (DocumentSpan span in style.Spans)
        {
            Console.WriteLine($"  Content: {result.Content.Substring(span.Index, span.Length)}");
        }
    }
}

Console.WriteLine("The following tables were extracted:");

for (int i = 0; i < result.Tables.Count; i++)
{
    DocumentTable table = result.Tables[i];
    Console.WriteLine($"  Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");

    foreach (DocumentTableCell cell in table.Cells)
    {
        Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) has kind '{cell.Kind}' and content: '{cell.Content}'.");
    }
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視一般文件模型輸出

使用 W-2 稅務模型


using Azure;
using Azure.AI.FormRecognizer.DocumentAnalysis;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentAnalysisClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentAnalysisClient client = new DocumentAnalysisClient(new Uri(endpoint), credential);

// sample document document
Uri w2Uri = new Uri("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/w2.png");

AnalyzeDocumentOperation operation = await client.AnalyzeDocumentFromUriAsync(WaitUntil.Completed, "prebuilt-tax.us.w2", w2Uri);

AnalyzeResult result = operation.Value;

for (int i = 0; i < result.Documents.Count; i++)
{
    Console.WriteLine($"Document {i}:");

    AnalyzedDocument document = result.Documents[i];

    if (document.Fields.TryGetValue("AdditionalInfo", out DocumentField? additionalInfoField))
    {
        if (additionalInfoField.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField infoField in additionalInfoField.Value.AsList())
            {
                Console.WriteLine("AdditionalInfo:");

                if (infoField.FieldType == DocumentFieldType.Dictionary)
                {
                    IReadOnlyDictionary<string, DocumentField> infoFields = infoField.Value.AsDictionary();

                    if (infoFields.TryGetValue("Amount", out DocumentField? amountField))
                    {
                        if (amountField.FieldType == DocumentFieldType.Double)
                        {
                            double amount = amountField.Value.AsDouble();

                            Console.WriteLine($"  Amount: '{amount}', with confidence {amountField.Confidence}");
                        }
                    }

                    if (infoFields.TryGetValue("LetterCode", out DocumentField? letterCodeField))
                    {
                        if (letterCodeField.FieldType == DocumentFieldType.String)
                        {
                            string letterCode = letterCodeField.Value.AsString();

                            Console.WriteLine($"  LetterCode: '{letterCode}', with confidence {letterCodeField.Confidence}");
                        }
                    }
                }
            }
        }
    }


    if (document.Fields.TryGetValue("AllocatedTips", out DocumentField? allocatedTipsField))
    {
        if (allocatedTipsField.FieldType == DocumentFieldType.Double)
        {
            double allocatedTips = allocatedTipsField.Value.AsDouble();
            Console.WriteLine($"Allocated Tips: '{allocatedTips}', with confidence {allocatedTipsField.Confidence}");
        }
    }

    if (document.Fields.TryGetValue("Employer", out DocumentField? employerField))
    {
        if (employerField.FieldType == DocumentFieldType.Dictionary)
        {
            IReadOnlyDictionary<string, DocumentField> employerFields = employerField.Value.AsDictionary();

            if (employerFields.TryGetValue("Name", out DocumentField? employerNameField))
            {
                if (employerNameField.FieldType == DocumentFieldType.String)
                {
                    string name = employerNameField.Value.AsString();

                    Console.WriteLine($"Employer Name: '{name}', with confidence {employerNameField.Confidence}");
                }
            }

            if (employerFields.TryGetValue("IdNumber", out DocumentField? idNumberField))
            {
                if (idNumberField.FieldType == DocumentFieldType.String)
                {
                    string id = idNumberField.Value.AsString();

                    Console.WriteLine($"Employer ID Number: '{id}', with confidence {idNumberField.Confidence}");
                }
            }

            if (employerFields.TryGetValue("Address", out DocumentField? addressField))
            {
                if (addressField.FieldType == DocumentFieldType.Address)
                {
                    Console.WriteLine($"Employer Address: '{addressField.Content}', with confidence {addressField.Confidence}");
                }
            }
        }
    }
}

請造訪 GitHub 上的 Azure 範例存放庫,以檢視 W-2 稅務模型輸出

使用發票模型

using Azure;
using Azure.AI.FormRecognizer.DocumentAnalysis;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentAnalysisClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentAnalysisClient client = new DocumentAnalysisClient(new Uri(endpoint), credential);

// sample document document
Uri invoiceUri = new Uri("https://github.com/Azure-Samples/cognitive-services-REST-api-samples/raw/master/curl/form-recognizer/rest-api/invoice.pdf");

AnalyzeDocumentOperation operation = await client.AnalyzeDocumentFromUriAsync(WaitUntil.Completed, "prebuilt-invoice", invoiceUri);

AnalyzeResult result = operation.Value;

for (int i = 0; i < result.Documents.Count; i++)
{
    Console.WriteLine($"Document {i}:");

    AnalyzedDocument document = result.Documents[i];

    if (document.Fields.TryGetValue("VendorName", out DocumentField vendorNameField))
    {
        if (vendorNameField.FieldType == DocumentFieldType.String)
        {
            string vendorName = vendorNameField.Value.AsString();
            Console.WriteLine($"Vendor Name: '{vendorName}', with confidence {vendorNameField.Confidence}");
        }
    }

    if (document.Fields.TryGetValue("CustomerName", out DocumentField customerNameField))
    {
        if (customerNameField.FieldType == DocumentFieldType.String)
        {
            string customerName = customerNameField.Value.AsString();
            Console.WriteLine($"Customer Name: '{customerName}', with confidence {customerNameField.Confidence}");
        }
    }

    if (document.Fields.TryGetValue("Items", out DocumentField itemsField))
    {
        if (itemsField.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField itemField in itemsField.Value.AsList())
            {
                Console.WriteLine("Item:");

                if (itemField.FieldType == DocumentFieldType.Dictionary)
                {
                    IReadOnlyDictionary<string, DocumentField> itemFields = itemField.Value.AsDictionary();

                    if (itemFields.TryGetValue("Description", out DocumentField itemDescriptionField))
                    {
                        if (itemDescriptionField.FieldType == DocumentFieldType.String)
                        {
                            string itemDescription = itemDescriptionField.Value.AsString();

                            Console.WriteLine($"  Description: '{itemDescription}', with confidence {itemDescriptionField.Confidence}");
                        }
                    }

                    if (itemFields.TryGetValue("Amount", out DocumentField itemAmountField))
                    {
                        if (itemAmountField.FieldType == DocumentFieldType.Currency)
                        {
                            CurrencyValue itemAmount = itemAmountField.Value.AsCurrency();

                            Console.WriteLine($"  Amount: '{itemAmount.Symbol}{itemAmount.Amount}', with confidence {itemAmountField.Confidence}");
                        }
                    }
                }
            }
        }
    }

    if (document.Fields.TryGetValue("SubTotal", out DocumentField subTotalField))
    {
        if (subTotalField.FieldType == DocumentFieldType.Currency)
        {
            CurrencyValue subTotal = subTotalField.Value.AsCurrency();
            Console.WriteLine($"Sub Total: '{subTotal.Symbol}{subTotal.Amount}', with confidence {subTotalField.Confidence}");
        }
    }

    if (document.Fields.TryGetValue("TotalTax", out DocumentField totalTaxField))
    {
        if (totalTaxField.FieldType == DocumentFieldType.Currency)
        {
            CurrencyValue totalTax = totalTaxField.Value.AsCurrency();
            Console.WriteLine($"Total Tax: '{totalTax.Symbol}{totalTax.Amount}', with confidence {totalTaxField.Confidence}");
        }
    }

    if (document.Fields.TryGetValue("InvoiceTotal", out DocumentField invoiceTotalField))
    {
        if (invoiceTotalField.FieldType == DocumentFieldType.Currency)
        {
            CurrencyValue invoiceTotal = invoiceTotalField.Value.AsCurrency();
            Console.WriteLine($"Invoice Total: '{invoiceTotal.Symbol}{invoiceTotal.Amount}', with confidence {invoiceTotalField.Confidence}");
        }
    }
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視發票模型輸出

使用收據模型


using Azure;
using Azure.AI.FormRecognizer.DocumentAnalysis;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentAnalysisClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentAnalysisClient client = new DocumentAnalysisClient(new Uri(endpoint), credential);

// sample document document
Uri receiptUri = new Uri("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/receipt.png");

AnalyzeDocumentOperation operation = await client.AnalyzeDocumentFromUriAsync(WaitUntil.Completed, "prebuilt-receipt", receiptUri);

AnalyzeResult receipts = operation.Value;

foreach (AnalyzedDocument receipt in receipts.Documents)
{
    if (receipt.Fields.TryGetValue("MerchantName", out DocumentField merchantNameField))
    {
        if (merchantNameField.FieldType == DocumentFieldType.String)
        {
            string merchantName = merchantNameField.Value.AsString();

            Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
        }
    }

    if (receipt.Fields.TryGetValue("TransactionDate", out DocumentField transactionDateField))
    {
        if (transactionDateField.FieldType == DocumentFieldType.Date)
        {
            DateTimeOffset transactionDate = transactionDateField.Value.AsDate();

            Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
        }
    }

    if (receipt.Fields.TryGetValue("Items", out DocumentField itemsField))
    {
        if (itemsField.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField itemField in itemsField.Value.AsList())
            {
                Console.WriteLine("Item:");

                if (itemField.FieldType == DocumentFieldType.Dictionary)
                {
                    IReadOnlyDictionary<string, DocumentField> itemFields = itemField.Value.AsDictionary();

                    if (itemFields.TryGetValue("Description", out DocumentField itemDescriptionField))
                    {
                        if (itemDescriptionField.FieldType == DocumentFieldType.String)
                        {
                            string itemDescription = itemDescriptionField.Value.AsString();

                            Console.WriteLine($"  Description: '{itemDescription}', with confidence {itemDescriptionField.Confidence}");
                        }
                    }

                    if (itemFields.TryGetValue("TotalPrice", out DocumentField itemTotalPriceField))
                    {
                        if (itemTotalPriceField.FieldType == DocumentFieldType.Double)
                        {
                            double itemTotalPrice = itemTotalPriceField.Value.AsDouble();

                            Console.WriteLine($"  Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                        }
                    }
                }
            }
        }
    }

    if (receipt.Fields.TryGetValue("Total", out DocumentField totalField))
    {
        if (totalField.FieldType == DocumentFieldType.Double)
        {
            double total = totalField.Value.AsDouble();

            Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
        }
    }
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視收據模型輸出

識別碼文件模型


using Azure;
using Azure.AI.FormRecognizer.DocumentAnalysis;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentAnalysisClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentAnalysisClient client = new DocumentAnalysisClient(new Uri(endpoint), credential);

// sample document document

Uri idDocumentUri = new Uri("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/identity_documents.png");

AnalyzeDocumentOperation operation = await client.AnalyzeDocumentFromUriAsync(WaitUntil.Completed, "prebuilt-idDocument", idDocumentUri);

AnalyzeResult identityDocuments = operation.Value;

AnalyzedDocument identityDocument = identityDocuments.Documents.Single();

if (identityDocument.Fields.TryGetValue("Address", out DocumentField addressField))
{
    if (addressField.FieldType == DocumentFieldType.String)
    {
        string address = addressField.Value. AsString();
        Console.WriteLine($"Address: '{address}', with confidence {addressField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("CountryRegion", out DocumentField countryRegionField))
{
    if (countryRegionField.FieldType == DocumentFieldType.CountryRegion)
    {
        string countryRegion = countryRegionField.Value.AsCountryRegion();
        Console.WriteLine($"CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("DateOfBirth", out DocumentField dateOfBirthField))
{
    if (dateOfBirthField.FieldType == DocumentFieldType.Date)
    {
        DateTimeOffset dateOfBirth = dateOfBirthField.Value.AsDate();
        Console.WriteLine($"Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("DateOfExpiration", out DocumentField dateOfExpirationField))
{
    if (dateOfExpirationField.FieldType == DocumentFieldType.Date)
    {
        DateTimeOffset dateOfExpiration = dateOfExpirationField.Value.AsDate();
        Console.WriteLine($"Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("DocumentNumber", out DocumentField documentNumberField))
{
    if (documentNumberField.FieldType == DocumentFieldType.String)
    {
        string documentNumber = documentNumberField.Value.AsString();
        Console.WriteLine($"Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("FirstName", out DocumentField firstNameField))
{
    if (firstNameField.FieldType == DocumentFieldType.String)
    {
        string firstName = firstNameField.Value.AsString();
        Console.WriteLine($"First Name: '{firstName}', with confidence {firstNameField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("LastName", out DocumentField lastNameField))
{
    if (lastNameField.FieldType == DocumentFieldType.String)
    {
        string lastName = lastNameField.Value.AsString();
        Console.WriteLine($"Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("Region", out DocumentField regionfield))
{
    if (regionfield.FieldType == DocumentFieldType.String)
    {
        string region = regionfield.Value.AsString();
        Console.WriteLine($"Region: '{region}', with confidence {regionfield.Confidence}");
    }
}

if (identityDocument.Fields.TryGetValue("Sex", out DocumentField sexfield))
{
    if (sexfield.FieldType == DocumentFieldType.String)
    {
        string sex = sexfield.Value.AsString();
        Console.WriteLine($"Sex: '{sex}', with confidence {sexfield.Confidence}");
    }
}

請流覽 GitHub 上的 Azure 範例存放庫,並檢視 標識碼檔模型輸出

使用名片模型

using Azure;
using Azure.AI.FormRecognizer.DocumentAnalysis;

//use your `key` and `endpoint` environment variables to create your `AzureKeyCredential` and `DocumentAnalysisClient` instances
string key = Environment.GetEnvironmentVariable("DI_KEY");
string endpoint = Environment.GetEnvironmentVariable("DI_ENDPOINT");
AzureKeyCredential credential = new AzureKeyCredential(key);
DocumentAnalysisClient client = new DocumentAnalysisClient(new Uri(endpoint), credential);

// sample document document
Uri businessCardUri = new Uri("https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/business-card-english.jpg");

AnalyzeDocumentOperation operation = await client.AnalyzeDocumentFromUriAsync(WaitUntil.Completed, "prebuilt-businessCard", businessCardUri);

AnalyzeResult businessCards = operation.Value;

foreach (AnalyzedDocument businessCard in businessCards.Documents)
{
    if (businessCard.Fields.TryGetValue("ContactNames", out DocumentField ContactNamesField))
    {
        if (ContactNamesField.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField contactNameField in ContactNamesField.Value.AsList())
            {
                Console.WriteLine("Contact Name: ");

                if (contactNameField.FieldType == DocumentFieldType.Dictionary)
                {
                    IReadOnlyDictionary<string, DocumentField> contactNameFields = contactNameField.Value.AsDictionary();

                    if (contactNameFields.TryGetValue("FirstName", out DocumentField firstNameField))
                    {
                        if (firstNameField.FieldType == DocumentFieldType.String)
                        {
                            string firstName = firstNameField.Value.AsString();

                            Console.WriteLine($"  First Name: '{firstName}', with confidence {firstNameField.Confidence}");
                        }
                    }

                    if (contactNameFields.TryGetValue("LastName", out DocumentField lastNameField))
                    {
                        if (lastNameField.FieldType == DocumentFieldType.String)
                        {
                            string lastName = lastNameField.Value.AsString();

                            Console.WriteLine($"  Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
                        }
                    }
                }
            }
        }
    }

    if (businessCard.Fields.TryGetValue("JobTitles", out DocumentField jobTitlesFields))
    {
        if (jobTitlesFields.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField jobTitleField in jobTitlesFields.Value.AsList())
            {
                if (jobTitleField.FieldType == DocumentFieldType.String)
                {
                    string jobTitle = jobTitleField.Value.AsString();

                    Console.WriteLine($"Job Title: '{jobTitle}', with confidence {jobTitleField.Confidence}");
                }
            }
        }
    }

    if (businessCard.Fields.TryGetValue("Departments", out DocumentField departmentFields))
    {
        if (departmentFields.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField departmentField in departmentFields.Value.AsList())
            {
                if (departmentField.FieldType == DocumentFieldType.String)
                {
                    string department = departmentField.Value.AsString();

                    Console.WriteLine($"Department: '{department}', with confidence {departmentField.Confidence}");
                }
            }
        }
    }

    if (businessCard.Fields.TryGetValue("Emails", out DocumentField emailFields))
    {
        if (emailFields.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField emailField in emailFields.Value.AsList())
            {
                if (emailField.FieldType == DocumentFieldType.String)
                {
                    string email = emailField.Value.AsString();

                    Console.WriteLine($"Email: '{email}', with confidence {emailField.Confidence}");
                }
            }
        }
    }

    if (businessCard.Fields.TryGetValue("Websites", out DocumentField websiteFields))
    {
        if (websiteFields.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField websiteField in websiteFields.Value.AsList())
            {
                if (websiteField.FieldType == DocumentFieldType.String)
                {
                    string website = websiteField.Value.AsString();

                    Console.WriteLine($"Website: '{website}', with confidence {websiteField.Confidence}");
                }
            }
        }
    }

    if (businessCard.Fields.TryGetValue("MobilePhones", out DocumentField mobilePhonesFields))
    {
        if (mobilePhonesFields.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField mobilePhoneField in mobilePhonesFields.Value.AsList())
            {
                if (mobilePhoneField.FieldType == DocumentFieldType.PhoneNumber)
                {
                    string mobilePhone = mobilePhoneField.Value.AsPhoneNumber();

                    Console.WriteLine($"Mobile phone number: '{mobilePhone}', with confidence {mobilePhoneField.Confidence}");
                }
            }
        }
    }

    if (businessCard.Fields.TryGetValue("WorkPhones", out DocumentField workPhonesFields))
    {
        if (workPhonesFields.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField workPhoneField in workPhonesFields.Value.AsList())
            {
                if (workPhoneField.FieldType == DocumentFieldType.PhoneNumber)
                {
                    string workPhone = workPhoneField.Value.AsPhoneNumber();

                    Console.WriteLine($"Work phone number: '{workPhone}', with confidence {workPhoneField.Confidence}");
                }
            }
        }
    }

    if (businessCard.Fields.TryGetValue("Faxes", out DocumentField faxesFields))
    {
        if (faxesFields.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField faxField in faxesFields.Value.AsList())
            {
                if (faxField.FieldType == DocumentFieldType.PhoneNumber)
                {
                    string fax = faxField.Value.AsPhoneNumber();

                    Console.WriteLine($"Fax phone number: '{fax}', with confidence {faxField.Confidence}");
                }
            }
        }
    }

    if (businessCard.Fields.TryGetValue("Addresses", out DocumentField addressesFields))
    {
        if (addressesFields.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField addressField in addressesFields.Value.AsList())
            {
                if (addressField.FieldType == DocumentFieldType.String)
                {
                    string address = addressField.Value.AsString();

                    Console.WriteLine($"Address: '{address}', with confidence {addressField.Confidence}");
                }
            }
        }
    }

    if (businessCard.Fields.TryGetValue("CompanyNames", out DocumentField companyNamesFields))
    {
        if (companyNamesFields.FieldType == DocumentFieldType.List)
        {
            foreach (DocumentField companyNameField in companyNamesFields.Value.AsList())
            {
                if (companyNameField.FieldType == DocumentFieldType.String)
                {
                    string companyName = companyNameField.Value.AsString();

                    Console.WriteLine($"Company name: '{companyName}', with confidence {companyNameField.Confidence}");
                }
            }
        }
    }
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視名片模型輸出

用戶端程式庫 (英文) | SDK 參考 (英文) | REST API 參考 (部分機器翻譯) | 套件 (Maven) (英文) | 範例 (英文) |支援的 REST API 版本 (部分機器翻譯)

必要條件

  • Azure 訂用帳戶 - 建立免費帳戶

  • 最新的 Visual Studio Code 版本或您慣用的 IDE。 請參閱 Visual Studio Code 中的 Java

    • Visual Studio Code 提供適用於 Windows 和 macOS 的 Java 編碼套件。 編碼套件是一組 VS 程式碼、Java 開發工具套件 (JDK),以及 Microsoft 建議的延伸模組集合。 編碼套件也可以用於修正現有的開發環境。
    • 如果您使用 VS Code 和 JAVA 編碼套件,請安裝適用於 JAVA 的 Gradle 延伸模組。

    如果您未使用 Visual Studio Code,請確保在開發環境中安裝下列項目:

  • Azure AI 服務或文件智慧服務資源。 建立 single-servicemulti-service。 您可以使用免費定價層 (F0) 來試用服務,之後可升級至付費層以用於實際執行環境。

    提示

    如果您打算使用單一端點和金鑰存取多個 Azure AI 服務,請建立 Azure AI 服務資源。 若為僅限文件智慧服務存取,請建立文件智慧服務資源。 如果您想要使用 Microsoft Entra 驗證,則需要使用單一服務資源。

  • 從您所建立資源的金鑰和端點,將應用程式連線至 Azure 文件智慧服務。

    1. 部署資源之後,請選取 [移至資源]
    2. 在左側導覽功能表中,選取 [金鑰和端點]。
    3. 複製其中一個金鑰和 [端點],以供稍後在本文中使用。

    Azure 入口網站中金鑰與端點位置的螢幕擷取畫面。

  • URL 的文件檔案。 在本專案中,您可以使用下表中針對每個功能所提供的範例表單:

    功能 modelID document-url
    Read 模型 prebuilt-read 範例手冊
    版面配置模型 prebuilt-layout 範例預約確認
    W-2 表單模型 prebuilt-tax.us.w2 範例 W-2 表單
    發票模型 prebuilt-invoice 發票範例
    收據模型 prebuilt-receipt 範例收據
    識別碼文件模型 prebuilt-idDocument 範例身分證明文件

設定環境變數

若要與此文件智慧服務互動,您必須建立 DocumentAnalysisClient 類別的執行個體。 若要這樣做,請使用 keyendpoint 以從 Azure 入口網站將用戶端具現化。 在此專案中,使用環境變數來儲存和存取認證。

重要

如果您使用 API 金鑰,請將其安全地儲存在別處,例如 Azure Key Vault。 請勿在程式碼中直接包含 API 金鑰,且切勿公開張貼金鑰。

如需 AI 服務安全性的詳細資訊,請參閱驗證對 Azure AI 服務的要求

若要設定文件智慧服務資源金鑰的環境變數,請開啟主控台視窗,並遵循作業系統和開發環境的指示進行。 將 <yourKey><yourEndpoint> 取代為 Azure 入口網站中資源的值。

Windows 中的環境變數不區分大小寫。 這些變數通常會以大寫方式宣告,並加上底線聯結的字組。 在命令提示字元中,執行下列命令:

  1. 設定金鑰變數:

    setx DI_KEY <yourKey>
    
  2. 設定端點變數

    setx DI_ENDPOINT <yourEndpoint>
    
  3. 設定環境變數之後,請關閉 [命令提示字元] 視窗。 值會維持不變,直到您再次變更這些值為止。

  4. 重新啟動任何讀取環境變數的執行中程式。 例如,如果您使用 Visual Studio 或 Visual Studio Code 作為編輯器,則請在執行範例程式碼之前重新啟動。

以下是一些更實用的命令,可與環境變數搭配使用:

Command 動作 範例
setx VARIABLE_NAME= 將值設定為空字串,以刪除環境變數。 setx DI_KEY=
setx VARIABLE_NAME=value 設定或變更環境變數的值。 setx DI_KEY=<yourKey>
set VARIABLE_NAME 顯示特定環境變數的值。 set DI_KEY
set 顯示所有環境變數。 set

設定程式設計環境

若要設定程式設計環境,請建立 Gradle 專案並安裝用戶端程式庫。

建立 Gradle 專案

  1. 在主控台視窗中,為名為 doc-intelligence-app 的應用程式建立目錄,並瀏覽至該目錄。

    mkdir doc-intelligence-app
    cd doc-intelligence-app
    
  2. 從您的工作目錄執行 gradle init 命令。 此命令會建立 Gradle 的基本組建檔案,包括 build.gradle.kts,將在執行階段使用 build.gradle.kts,來建立及設定應用程式。

    gradle init --type basic
    
  3. 出現選擇 DSL 的提示時,請選取 [Kotlin]

  4. 選取 Enter 以接受預設專案名稱 doc-intelligence-app

安裝用戶端程式庫

本文使用 Gradle 相依性管理員。 您可以在 Maven 中央存放庫中找到用戶端程式庫和其他相依性管理員的資訊。

  1. 在 IDE 中開啟專案的 build.gradle.kts 檔案。 複製並貼上下列程式碼,以將用戶端程式庫做為 implementation 陳述式包含在內,並且加入必要的外掛程式和設定。

    plugins {
       java
       application
    }
    application {
        mainClass.set("DocIntelligence")
    }
    repositories {
        mavenCentral()
    }
    dependencies {
        implementation group: 'com.azure', name: 'azure-ai-documentintelligence', version: '1.0.0-beta.4'
    }
    

建立 Java 應用程式

若要與此文件智慧服務互動,請建立 DocumentIntelligenceClient 類別的執行個體。 若要這樣做,請使用 key 從 Azure 入口網站建立 AzureKeyCredential,並使用 AzureKeyCredential 和文件智慧服務 endpoint 來建立 DocumentIntelligenceClient 執行個體。

  1. doc-intelligence-app 目錄執行下列命令:

    mkdir -p src/main/java
    

該命令會建立下列目錄結構:

Java 目錄結構之螢幕擷取畫面

  1. 瀏覽至 java 目錄並建立名為 DocIntelligence.java 的檔案。

    提示

    您可以使用 PowerShell 建立新檔案。 按住 Shift 鍵並在資料夾上以滑鼠右鍵按一下,以開啟專案目錄中的 PowerShell 視窗,然後輸入下列命令:New-Item DocIntelligence.java

  2. 開啟 DocIntelligence.java 檔案,然後選取下列其中一個程式碼範例,並且複製/貼入您的應用程式:

    • prebuilt-read 模型是所有文件智慧服務模型的核心,而且可以偵測行、字組、位置和語言。 版面配置、一般文件、預建和自訂模型全都使用 read 模型做為從文件擷取文字的基礎。
    • prebuilt-layout 模型會從文件和映像中擷取文字和文字位置、資料表、選取標記和結構資訊。
    • prebuilt-tax.us.w2 模型會擷取美國內部營收服務 (IRS) 稅務表單上所報告的資訊。
    • prebuilt-invoice 模型會以各種格式從銷售發票擷取重要欄位和明細行項目。
    • prebuilt-receipt 模型會擷取印刷和手寫銷售收據的重要資訊。
    • prebuilt-idDocument 模型會擷取美國駕照、國際護照個人資料頁、美國州別識別碼、社會安全卡和永久居民卡的重要資訊。
  3. 輸入下列命令:

    gradle build
    gradle run
    

使用讀取模型

import com.azure.ai.documentintelligence;

import com.azure.ai.documentintelligence.models.AnalyzeDocumentRequest;
import com.azure.ai.documentintelligence.models.AnalyzeResult;
import com.azure.ai.documentintelligence.models.AnalyzeResultOperation;
import com.azure.ai.documentintelligence.models.Document;
import com.azure.ai.documentintelligence.models.DocumentField;
import com.azure.ai.documentintelligence.models.DocumentFieldType;
import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.time.LocalDate;
import java.util.List;
import java.util.Map;


public class DocIntelligence {

  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentIntelligenceClient` instance and `AzureKeyCredential` variable
      DocumentIntelligenceClient client = new DocumentIntelligenceClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

//sample document
String documentUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/read.png";

String modelId = "prebuilt-read";

SyncPoller < OperationResult, AnalyzeResult > analyzeLayoutResultPoller =
  client.beginAnalyzeDocument(modelId, invoiceUrl);;

AnalyzeResult analyzeLayoutResult = analyzeLayoutResultPoller.getFinalResult().getAnalyzeResult();

// pages
analyzeLayoutResult.getPages().forEach(documentPage -> {
  System.out.printf("Page has width: %.2f and height: %.2f, measured with unit: %s%n",
    documentPage.getWidth(),
    documentPage.getHeight(),
    documentPage.getUnit());

  // lines
  documentPage.getLines().forEach(documentLine ->
    System.out.printf("Line %s is within a bounding polygon %s.%n",
      documentLine.getContent(),
      documentLine.getBoundingPolygon().toString()));

  // words
  documentPage.getWords().forEach(documentWord ->
    System.out.printf("Word '%s' has a confidence score of %.2f.%n",
      documentWord.getContent(),
      documentWord.getConfidence()));
});
}
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視read模型輸出

使用版面配置模型

import com.azure.ai.documentintelligence;

import com.azure.ai.documentintelligence.models.AnalyzeDocumentRequest;
import com.azure.ai.documentintelligence.models.AnalyzeResult;
import com.azure.ai.documentintelligence.models.AnalyzeResultOperation;
import com.azure.ai.documentintelligence.models.Document;
import com.azure.ai.documentintelligence.models.DocumentField;
import com.azure.ai.documentintelligence.models.DocumentFieldType;
import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.time.LocalDate;
import java.util.List;
import java.util.Map;

public class DocIntelligence {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentIntelligenceClient` instance and `AzureKeyCredential` variable
      DocumentIntelligenceClient client = new DocumentIntelligenceClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

//sample document
String layoutDocumentUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/layout.png";
String modelId = "prebuilt-layout";

SyncPoller < OperationResult, AnalyzeResult > analyzeLayoutResultPoller =
  client.beginAnalyzeDocument(modelId, layoutDocumentUrl);

AnalyzeResult analyzeLayoutResult = analyzeLayoutResultPoller.getFinalResult().getAnalyzeResult();

// pages
analyzeLayoutResult.getPages().forEach(documentPage -> {
  System.out.printf("Page has width: %.2f and height: %.2f, measured with unit: %s%n",
    documentPage.getWidth(),
    documentPage.getHeight(),
    documentPage.getUnit());

  // lines
  documentPage.getLines().forEach(documentLine ->
    System.out.printf("Line %s is within a bounding polygon %s.%n",
      documentLine.getContent(),
      documentLine.getBoundingPolygon().toString()));

  // words
  documentPage.getWords().forEach(documentWord ->
    System.out.printf("Word '%s' has a confidence score of %.2f%n",
      documentWord.getContent(),
      documentWord.getConfidence()));

  // selection marks
  documentPage.getSelectionMarks().forEach(documentSelectionMark ->
    System.out.printf("Selection mark is '%s' and is within a bounding polygon %s with confidence %.2f.%n",
      documentSelectionMark.getSelectionMarkState().toString(),
      getBoundingCoordinates(documentSelectionMark.getBoundingPolygon()),
      documentSelectionMark.getConfidence()));
});

// tables
List < DocumentTable > tables = analyzeLayoutResult.getTables();
for (int i = 0; i < tables.size(); i++) {
  DocumentTable documentTables = tables.get(i);
  System.out.printf("Table %d has %d rows and %d columns.%n", i, documentTables.getRowCount(),
    documentTables.getColumnCount());
  documentTables.getCells().forEach(documentTableCell -> {
    System.out.printf("Cell '%s', has row index %d and column index %d.%n", documentTableCell.getContent(),
      documentTableCell.getRowIndex(), documentTableCell.getColumnIndex());
  });
  System.out.println();
}

}

// Utility function to get the bounding polygon coordinates.
private static String getBoundingCoordinates(List < Point > boundingPolygon) {
  return boundingPolygon.stream().map(point -> String.format("[%.2f, %.2f]", point.getX(),
    point.getY())).collect(Collectors.joining(", "));
}

}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視版面配置模型輸出

請使用一般文件模型

import com.azure.ai.documentintelligence;

import com.azure.ai.documentintelligence.models.AnalyzeDocumentRequest;
import com.azure.ai.documentintelligence.models.AnalyzeResult;
import com.azure.ai.documentintelligence.models.AnalyzeResultOperation;
import com.azure.ai.documentintelligence.models.Document;
import com.azure.ai.documentintelligence.models.DocumentField;
import com.azure.ai.documentintelligence.models.DocumentFieldType;
import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.time.LocalDate;
import java.util.List;
import java.util.Map;

public class DocIntelligence {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentIntelligenceClient` instance and `AzureKeyCredential` variable
      DocumentIntelligenceClient client = new DocumentIntelligenceClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

//sample document
String generalDocumentUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/sample-layout.pdf";
String modelId = "prebuilt-document";
SyncPoller < OperationResult, AnalyzeResult > analyzeDocumentPoller =
  client.beginAnalyzeDocument(modelId, generalDocumentUrl);

AnalyzeResult analyzeResult = analyzeDocumentPoller.getFinalResult().getAnalyzeResult();;

// pages
analyzeResult.getPages().forEach(documentPage -> {
  System.out.printf("Page has width: %.2f and height: %.2f, measured with unit: %s%n",
    documentPage.getWidth(),
    documentPage.getHeight(),
    documentPage.getUnit());

  // lines
  documentPage.getLines().forEach(documentLine ->
    System.out.printf("Line %s is within a bounding polygon %s.%n",
      documentLine.getContent(),
      documentLine.getBoundingPolygon().toString()));

  // words
  documentPage.getWords().forEach(documentWord ->
    System.out.printf("Word %s has a confidence score of %.2f%n.",
      documentWord.getContent(),
      documentWord.getConfidence()));
});

// tables
List < DocumentTable > tab_les = analyzeResult.getTables();
for (int i = 0; i < tab_les.size(); i++) {
  DocumentTable documentTable = tab_les.get(i);
  System.out.printf("Table %d has %d rows and %d columns.%n", i, documentTable.getRowCount(),
    documentTable.getColumnCount());
  documentTable.getCells().forEach(documentTableCell -> {
    System.out.printf("Cell '%s', has row index %d and column index %d.%n",
      documentTableCell.getContent(),
      documentTableCell.getRowIndex(), documentTableCell.getColumnIndex());
  });
  System.out.println();
}

// Key-value pairs
analyzeResult.getKeyValuePairs().forEach(documentKeyValuePair -> {
  System.out.printf("Key content: %s%n", documentKeyValuePair.getKey().getContent());
  System.out.printf("Key content bounding region: %s%n",
    documentKeyValuePair.getKey().getBoundingRegions().toString());

  if (documentKeyValuePair.getValue() != null) {
    System.out.printf("Value content: %s%n", documentKeyValuePair.getValue().getContent());
    System.out.printf("Value content bounding region: %s%n", documentKeyValuePair.getValue().getBoundingRegions().toString());
  }
});

}

}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視一般文件模型輸出

使用 W-2 稅務模型

import com.azure.ai.documentintelligence;

import com.azure.ai.documentintelligence.models.AnalyzeDocumentRequest;
import com.azure.ai.documentintelligence.models.AnalyzeResult;
import com.azure.ai.documentintelligence.models.AnalyzeResultOperation;
import com.azure.ai.documentintelligence.models.Document;
import com.azure.ai.documentintelligence.models.DocumentField;
import com.azure.ai.documentintelligence.models.DocumentFieldType;
import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.time.LocalDate;
import java.util.List;
import java.util.Map;

public class DocIntelligence {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentIntelligenceClient` instance and `AzureKeyCredential` variable
      DocumentIntelligenceClient client = new DocumentIntelligenceClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

// sample document
String w2Url = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/w2.png";
String modelId = "prebuilt-tax.us.w2";

SyncPoller < OperationResult, AnalyzeResult > analyzeW2Poller =
  client.beginAnalyzeDocument(modelId, w2Url);

AnalyzeResult analyzeTaxResult = analyzeW2Poller.getFinalResult().getAnalyzeResult();

for (int i = 0; i < analyzeTaxResult.getDocuments().size(); i++) {
  AnalyzedDocument analyzedTaxDocument = analyzeTaxResult.getDocuments().get(i);
  Map < String, DocumentField > taxFields = analyzedTaxDocument.getFields();
  System.out.printf("----------- Analyzing Document  %d -----------%n", i);
  DocumentField w2FormVariantField = taxFields.get("W2FormVariant");
  if (w2FormVariantField != null) {
    if (DocumentFieldType.STRING == w2FormVariantField.getType()) {
      String merchantName = w2FormVariantField.getValueAsString();
      System.out.printf("Form variant: %s, confidence: %.2f%n",
        merchantName, w2FormVariantField.getConfidence());
    }
  }

  DocumentField employeeField = taxFields.get("Employee");
  if (employeeField != null) {
    System.out.println("Employee Data: ");
    if (DocumentFieldType.MAP == employeeField.getType()) {
      Map < String, DocumentField > employeeDataFieldMap = employeeField.getValueAsMap();
      DocumentField employeeName = employeeDataFieldMap.get("Name");
      if (employeeName != null) {
        if (DocumentFieldType.STRING == employeeName.getType()) {
          String employeesName = employeeName.getValueAsString();
          System.out.printf("Employee Name: %s, confidence: %.2f%n",
            employeesName, employeeName.getConfidence());
        }
      }
      DocumentField employeeAddrField = employeeDataFieldMap.get("Address");
      if (employeeAddrField != null) {
        if (DocumentFieldType.STRING == employeeAddrField.getType()) {
          String employeeAddress = employeeAddrField.getValueAsString();
          System.out.printf("Employee Address: %s, confidence: %.2f%n",
            employeeAddress, employeeAddrField.getConfidence());
        }
      }
    }
  }

  DocumentField employerField = taxFields.get("Employer");
  if (employerField != null) {
    System.out.println("Employer Data: ");
    if (DocumentFieldType.MAP == employerField.getType()) {
      Map < String, DocumentField > employerDataFieldMap = employerField.getValueAsMap();
      DocumentField employerNameField = employerDataFieldMap.get("Name");
      if (employerNameField != null) {
        if (DocumentFieldType.STRING == employerNameField.getType()) {
          String employerName = employerNameField.getValueAsString();
          System.out.printf("Employer Name: %s, confidence: %.2f%n",
            employerName, employerNameField.getConfidence());
        }
      }

      DocumentField employerIDNumberField = employerDataFieldMap.get("IdNumber");
      if (employerIDNumberField != null) {
        if (DocumentFieldType.STRING == employerIDNumberField.getType()) {
          String employerIdNumber = employerIDNumberField.getValueAsString();
          System.out.printf("Employee ID Number: %s, confidence: %.2f%n",
            employerIdNumber, employerIDNumberField.getConfidence());
        }
      }
    }
  }

  DocumentField taxYearField = taxFields.get("TaxYear");
  if (taxYearField != null) {
    if (DocumentFieldType.STRING == taxYearField.getType()) {
      String taxYear = taxYearField.getValueAsString();
      System.out.printf("Tax year: %s, confidence: %.2f%n",
        taxYear, taxYearField.getConfidence());
    }
  }

  DocumentField taxDateField = taxFields.get("TaxDate");
  if (taxDateField != null) {
    if (DocumentFieldType.DATE == taxDateField.getType()) {
      LocalDate taxDate = taxDateField.getValueAsDate();
      System.out.printf("Tax Date: %s, confidence: %.2f%n",
        taxDate, taxDateField.getConfidence());
    }
  }

  DocumentField socialSecurityTaxField = taxFields.get("SocialSecurityTaxWithheld");
  if (socialSecurityTaxField != null) {
    if (DocumentFieldType.DOUBLE == socialSecurityTaxField.getType()) {
      Double socialSecurityTax = socialSecurityTaxField.getValueAsDouble();
      System.out.printf("Social Security Tax withheld: %.2f, confidence: %.2f%n",
        socialSecurityTax, socialSecurityTaxField.getConfidence());
    }
  }
}
}
}

請造訪 GitHub 上的 Azure 範例存放庫,以檢視 W-2 稅務模型輸出

使用發票模型

import com.azure.ai.documentintelligence;

import com.azure.ai.documentintelligence.models.AnalyzeDocumentRequest;
import com.azure.ai.documentintelligence.models.AnalyzeResult;
import com.azure.ai.documentintelligence.models.AnalyzeResultOperation;
import com.azure.ai.documentintelligence.models.Document;
import com.azure.ai.documentintelligence.models.DocumentField;
import com.azure.ai.documentintelligence.models.DocumentFieldType;
import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.time.LocalDate;
import java.util.List;
import java.util.Map;

public class DocIntelligence {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentIntelligenceClient` instance and `AzureKeyCredential` variable
      DocumentIntelligenceClient client = new DocumentIntelligenceClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

// sample document
String invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/raw/master/curl/form-recognizer/rest-api/invoice.pdf";
String modelId = "prebuilt-invoice";

SyncPoller < OperationResult, AnalyzeResult > analyzeInvoicesPoller =
  client.beginAnalyzeDocument(modelId, invoiceUrl);

AnalyzeResult analyzeInvoiceResult = analyzeInvoicesPoller.getFinalResult().getAnalyzeResult();

for (int i = 0; i < analyzeInvoiceResult.getDocuments().size(); i++) {
  AnalyzedDocument analyzedInvoice = analyzeInvoiceResult.getDocuments().get(i);
  Map < String, DocumentField > invoiceFields = analyzedInvoice.getFields();
  System.out.printf("----------- Analyzing invoice  %d -----------%n", i);
  DocumentField vendorNameField = invoiceFields.get("VendorName");
  if (vendorNameField != null) {
    if (DocumentFieldType.STRING == vendorNameField.getType()) {
      String merchantName = vendorNameField.getValueAsString();
      System.out.printf("Vendor Name: %s, confidence: %.2f%n",
        merchantName, vendorNameField.getConfidence());
    }
  }

  DocumentField vendorAddressField = invoiceFields.get("VendorAddress");
  if (vendorAddressField != null) {
    if (DocumentFieldType.STRING == vendorAddressField.getType()) {
      String merchantAddress = vendorAddressField.getValueAsString();
      System.out.printf("Vendor address: %s, confidence: %.2f%n",
        merchantAddress, vendorAddressField.getConfidence());
    }
  }

  DocumentField customerNameField = invoiceFields.get("CustomerName");
  if (customerNameField != null) {
    if (DocumentFieldType.STRING == customerNameField.getType()) {
      String merchantAddress = customerNameField.getValueAsString();
      System.out.printf("Customer Name: %s, confidence: %.2f%n",
        merchantAddress, customerNameField.getConfidence());
    }
  }

  DocumentField customerAddressRecipientField = invoiceFields.get("CustomerAddressRecipient");
  if (customerAddressRecipientField != null) {
    if (DocumentFieldType.STRING == customerAddressRecipientField.getType()) {
      String customerAddr = customerAddressRecipientField.getValueAsString();
      System.out.printf("Customer Address Recipient: %s, confidence: %.2f%n",
        customerAddr, customerAddressRecipientField.getConfidence());
    }
  }

  DocumentField invoiceIdField = invoiceFields.get("InvoiceId");
  if (invoiceIdField != null) {
    if (DocumentFieldType.STRING == invoiceIdField.getType()) {
      String invoiceId = invoiceIdField.getValueAsString();
      System.out.printf("Invoice ID: %s, confidence: %.2f%n",
        invoiceId, invoiceIdField.getConfidence());
    }
  }

  DocumentField invoiceDateField = invoiceFields.get("InvoiceDate");
  if (customerNameField != null) {
    if (DocumentFieldType.DATE == invoiceDateField.getType()) {
      LocalDate invoiceDate = invoiceDateField.getValueAsDate();
      System.out.printf("Invoice Date: %s, confidence: %.2f%n",
        invoiceDate, invoiceDateField.getConfidence());
    }
  }

  DocumentField invoiceTotalField = invoiceFields.get("InvoiceTotal");
  if (customerAddressRecipientField != null) {
    if (DocumentFieldType.DOUBLE == invoiceTotalField.getType()) {
      Double invoiceTotal = invoiceTotalField.getValueAsDouble();
      System.out.printf("Invoice Total: %.2f, confidence: %.2f%n",
        invoiceTotal, invoiceTotalField.getConfidence());
    }
  }

  DocumentField invoiceItemsField = invoiceFields.get("Items");
  if (invoiceItemsField != null) {
    System.out.printf("Invoice Items: %n");
    if (DocumentFieldType.LIST == invoiceItemsField.getType()) {
      List < DocumentField > invoiceItems = invoiceItemsField.getValueAsList();
      invoiceItems.stream()
        .filter(invoiceItem -> DocumentFieldType.MAP == invoiceItem.getType())
        .map(documentField -> documentField.getValueAsMap())
        .forEach(documentFieldMap -> documentFieldMap.forEach((key, documentField) -> {
          if ("Description".equals(key)) {
            if (DocumentFieldType.STRING == documentField.getType()) {
              String name = documentField.getValueAsString();
              System.out.printf("Description: %s, confidence: %.2fs%n",
                name, documentField.getConfidence());
            }
          }
          if ("Quantity".equals(key)) {
            if (DocumentFieldType.DOUBLE == documentField.getType()) {
              Double quantity = documentField.getValueAsDouble();
              System.out.printf("Quantity: %f, confidence: %.2f%n",
                quantity, documentField.getConfidence());
            }
          }
          if ("UnitPrice".equals(key)) {
            if (DocumentFieldType.DOUBLE == documentField.getType()) {
              Double unitPrice = documentField.getValueAsDouble();
              System.out.printf("Unit Price: %f, confidence: %.2f%n",
                unitPrice, documentField.getConfidence());
            }
          }
          if ("ProductCode".equals(key)) {
            if (DocumentFieldType.DOUBLE == documentField.getType()) {
              Double productCode = documentField.getValueAsDouble();
              System.out.printf("Product Code: %f, confidence: %.2f%n",
                productCode, documentField.getConfidence());
            }
          }
        }));
    }
  }
}
}
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視發票模型輸出

使用收據模型

import com.azure.ai.documentintelligence;

import com.azure.ai.documentintelligence.models.AnalyzeDocumentRequest;
import com.azure.ai.documentintelligence.models.AnalyzeResult;
import com.azure.ai.documentintelligence.models.AnalyzeResultOperation;
import com.azure.ai.documentintelligence.models.Document;
import com.azure.ai.documentintelligence.models.DocumentField;
import com.azure.ai.documentintelligence.models.DocumentFieldType;
import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.time.LocalDate;
import java.util.List;
import java.util.Map;

public class DocIntelligence {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentIntelligenceClient` instance and `AzureKeyCredential` variable
      DocumentIntelligenceClient client = new DocumentIntelligenceClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

String receiptUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/receipt.png";
String modelId = "prebuilt-receipt";

SyncPoller < OperationResult, AnalyzeResult > analyzeReceiptPoller =
  client.beginAnalyzeDocument(modelId, receiptUrl);

AnalyzeResult receiptResults = analyzeReceiptPoller.getFinalResult().getAnalyzeResult();

for (int i = 0; i < receiptResults.getDocuments().size(); i++) {
  AnalyzedDocument analyzedReceipt = receiptResults.getDocuments().get(i);
  Map < String, DocumentField > receiptFields = analyzedReceipt.getFields();
  System.out.printf("----------- Analyzing receipt info %d -----------%n", i);
  DocumentField merchantNameField = receiptFields.get("MerchantName");
  if (merchantNameField != null) {
    if (DocumentFieldType.STRING == merchantNameField.getType()) {
      String merchantName = merchantNameField.getValueAsString();
      System.out.printf("Merchant Name: %s, confidence: %.2f%n",
        merchantName, merchantNameField.getConfidence());
    }
  }

  DocumentField merchantPhoneNumberField = receiptFields.get("MerchantPhoneNumber");
  if (merchantPhoneNumberField != null) {
    if (DocumentFieldType.PHONE_NUMBER == merchantPhoneNumberField.getType()) {
      String merchantAddress = merchantPhoneNumberField.getValueAsPhoneNumber();
      System.out.printf("Merchant Phone number: %s, confidence: %.2f%n",
        merchantAddress, merchantPhoneNumberField.getConfidence());
    }
  }

  DocumentField merchantAddressField = receiptFields.get("MerchantAddress");
  if (merchantAddressField != null) {
    if (DocumentFieldType.STRING == merchantAddressField.getType()) {
      String merchantAddress = merchantAddressField.getValueAsString();
      System.out.printf("Merchant Address: %s, confidence: %.2f%n",
        merchantAddress, merchantAddressField.getConfidence());
    }
  }

  DocumentField transactionDateField = receiptFields.get("TransactionDate");
  if (transactionDateField != null) {
    if (DocumentFieldType.DATE == transactionDateField.getType()) {
      LocalDate transactionDate = transactionDateField.getValueAsDate();
      System.out.printf("Transaction Date: %s, confidence: %.2f%n",
        transactionDate, transactionDateField.getConfidence());
    }
  }

  DocumentField receiptItemsField = receiptFields.get("Items");
  if (receiptItemsField != null) {
    System.out.printf("Receipt Items: %n");
    if (DocumentFieldType.LIST == receiptItemsField.getType()) {
      List < DocumentField > receiptItems = receiptItemsField.getValueAsList();
      receiptItems.stream()
        .filter(receiptItem -> DocumentFieldType.MAP == receiptItem.getType())
        .map(documentField -> documentField.getValueAsMap())
        .forEach(documentFieldMap -> documentFieldMap.forEach((key, documentField) -> {
          if ("Name".equals(key)) {
            if (DocumentFieldType.STRING == documentField.getType()) {
              String name = documentField.getValueAsString();
              System.out.printf("Name: %s, confidence: %.2fs%n",
                name, documentField.getConfidence());
            }
          }
          if ("Quantity".equals(key)) {
            if (DocumentFieldType.DOUBLE == documentField.getType()) {
              Double quantity = documentField.getValueAsDouble();
              System.out.printf("Quantity: %f, confidence: %.2f%n",
                quantity, documentField.getConfidence());
            }
          }
          if ("Price".equals(key)) {
            if (DocumentFieldType.DOUBLE == documentField.getType()) {
              Double price = documentField.getValueAsDouble();
              System.out.printf("Price: %f, confidence: %.2f%n",
                price, documentField.getConfidence());
            }
          }
          if ("TotalPrice".equals(key)) {
            if (DocumentFieldType.DOUBLE == documentField.getType()) {
              Double totalPrice = documentField.getValueAsDouble();
              System.out.printf("Total Price: %f, confidence: %.2f%n",
                totalPrice, documentField.getConfidence());
            }
          }
        }));
    }
  }
}
}
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視收據模型輸出

使用身分證明文件模型

import com.azure.ai.documentintelligence;

import com.azure.ai.documentintelligence.models.AnalyzeDocumentRequest;
import com.azure.ai.documentintelligence.models.AnalyzeResult;
import com.azure.ai.documentintelligence.models.AnalyzeResultOperation;
import com.azure.ai.documentintelligence.models.Document;
import com.azure.ai.documentintelligence.models.DocumentField;
import com.azure.ai.documentintelligence.models.DocumentFieldType;
import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.time.LocalDate;
import java.util.List;
import java.util.Map;

public class DocIntelligence {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentIntelligenceClient` instance and `AzureKeyCredential` variable
      DocumentIntelligenceClient client = new DocumentIntelligenceClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

//sample document
String licenseUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/identity_documents.png";
String modelId = "prebuilt-idDocument";

SyncPoller < OperationResult, AnalyzeResult > analyzeIdentityDocumentPoller = client.beginAnalyzeDocument(modelId, licenseUrl);

AnalyzeResult identityDocumentResults = analyzeIdentityDocumentPoller.getFinalResult().getAnalyzeResult();

for (int i = 0; i < identityDocumentResults.getDocuments().size(); i++) {
  AnalyzedDocument analyzedIDDocument = identityDocumentResults.getDocuments().get(i);
  Map < String, DocumentField > licenseFields = analyzedIDDocument.getFields();
  System.out.printf("----------- Analyzed license info for page %d -----------%n", i);
  DocumentField addressField = licenseFields.get("Address");
  if (addressField != null) {
    if (DocumentFieldType.STRING == addressField.getType()) {
      String address = addressField.getValueAsString();
      System.out.printf("Address: %s, confidence: %.2f%n",
        address, addressField.getConfidence());
    }
  }

  DocumentField countryRegionDocumentField = licenseFields.get("CountryRegion");
  if (countryRegionDocumentField != null) {
    if (DocumentFieldType.STRING == countryRegionDocumentField.getType()) {
      String countryRegion = countryRegionDocumentField.getValueAsCountry();
      System.out.printf("Country or region: %s, confidence: %.2f%n",
        countryRegion, countryRegionDocumentField.getConfidence());
    }
  }

  DocumentField dateOfBirthField = licenseFields.get("DateOfBirth");
  if (dateOfBirthField != null) {
    if (DocumentFieldType.DATE == dateOfBirthField.getType()) {
      LocalDate dateOfBirth = dateOfBirthField.getValueAsDate();
      System.out.printf("Date of Birth: %s, confidence: %.2f%n",
        dateOfBirth, dateOfBirthField.getConfidence());
    }
  }

  DocumentField dateOfExpirationField = licenseFields.get("DateOfExpiration");
  if (dateOfExpirationField != null) {
    if (DocumentFieldType.DATE == dateOfExpirationField.getType()) {
      LocalDate expirationDate = dateOfExpirationField.getValueAsDate();
      System.out.printf("Document date of expiration: %s, confidence: %.2f%n",
        expirationDate, dateOfExpirationField.getConfidence());
    }
  }

  DocumentField documentNumberField = licenseFields.get("DocumentNumber");
  if (documentNumberField != null) {
    if (DocumentFieldType.STRING == documentNumberField.getType()) {
      String documentNumber = documentNumberField.getValueAsString();
      System.out.printf("Document number: %s, confidence: %.2f%n",
        documentNumber, documentNumberField.getConfidence());
    }
  }

  DocumentField firstNameField = licenseFields.get("FirstName");
  if (firstNameField != null) {
    if (DocumentFieldType.STRING == firstNameField.getType()) {
      String firstName = firstNameField.getValueAsString();
      System.out.printf("First Name: %s, confidence: %.2f%n",
        firstName, documentNumberField.getConfidence());
    }
  }

  DocumentField lastNameField = licenseFields.get("LastName");
  if (lastNameField != null) {
    if (DocumentFieldType.STRING == lastNameField.getType()) {
      String lastName = lastNameField.getValueAsString();
      System.out.printf("Last name: %s, confidence: %.2f%n",
        lastName, lastNameField.getConfidence());
    }
  }

  DocumentField regionField = licenseFields.get("Region");
  if (regionField != null) {
    if (DocumentFieldType.STRING == regionField.getType()) {
      String region = regionField.getValueAsString();
      System.out.printf("Region: %s, confidence: %.2f%n",
        region, regionField.getConfidence());
    }
  }
}
}
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視 id-document 模型輸出

用戶端程式庫 (英文) | SDK 參考 (英文) | REST API 參考 (部分機器翻譯) | 套件 (Maven) (英文) | 範例 (英文)| 支援的 REST API 版本 (部分機器翻譯)

用戶端程式庫 (英文) | SDK 參考 (英文) | REST API 參考 (部分機器翻譯) | 套件 (Maven) (英文) | 範例 (英文)|支援的 REST API 版本 (部分機器翻譯)

必要條件

  • Azure 訂用帳戶 - 建立免費帳戶

  • 最新的 Visual Studio Code 版本或您慣用的 IDE。 請參閱 Visual Studio Code 中的 Java

    • Visual Studio Code 提供適用於 Windows 和 macOS 的 Java 編碼套件。 編碼套件是一組 VS Code、Java 開發工具套件 (JDK),以及 Microsoft 建議的延伸模組集合。 編碼套件也可以用於修正現有的開發環境。
    • 如果您使用 VS Code 和 JAVA 編碼套件,請安裝適用於 JAVA 的 Gradle 延伸模組。

    如果您未使用 Visual Studio Code,請確保在開發環境中安裝下列項目:

  • Azure AI 服務或文件智慧服務資源。 建立 single-servicemulti-service。 您可以使用免費定價層 (F0) 來試用服務,之後可升級至付費層以用於實際執行環境。

    提示

    如果您打算使用單一端點和金鑰存取多個 Azure AI 服務,請建立 Azure AI 服務資源。 若為僅限文件智慧服務存取,請建立文件智慧服務資源。 如果您想要使用 Microsoft Entra 驗證,則需要使用單一服務資源。

  • 從您所建立資源的金鑰和端點,將應用程式連線至 Azure 文件智慧服務。

    1. 部署資源之後,請選取 [移至資源]
    2. 在左側導覽功能表中,選取 [金鑰和端點]。
    3. 複製其中一個金鑰和 [端點],以供稍後在本文中使用。

    Azure 入口網站中金鑰與端點位置的螢幕擷取畫面。

  • URL 的文件檔案。 在本專案中,您可以使用下表中針對每個功能所提供的範例表單:

    功能 modelID document-url
    Read 模型 prebuilt-read 範例手冊
    版面配置模型 prebuilt-layout 範例預約確認
    W-2 表單模型 prebuilt-tax.us.w2 範例 W-2 表單
    發票模型 prebuilt-invoice 發票範例
    收據模型 prebuilt-receipt 範例收據
    識別碼文件模型 prebuilt-idDocument 範例身分證明文件
    名片模型 prebuilt-businessCard 範例名片

設定環境變數

若要與此文件智慧服務互動,您必須建立 DocumentAnalysisClient 類別的執行個體。 若要這樣做,請使用 keyendpoint 以從 Azure 入口網站將用戶端具現化。 在此專案中,使用環境變數來儲存和存取認證。

重要

如果您使用 API 金鑰,請將其安全地儲存在別處,例如 Azure Key Vault。 請勿在程式碼中直接包含 API 金鑰,且切勿公開張貼金鑰。

如需 AI 服務安全性的詳細資訊,請參閱驗證對 Azure AI 服務的要求

若要設定文件智慧服務資源金鑰的環境變數,請開啟主控台視窗,並遵循作業系統和開發環境的指示進行。 將 <yourKey><yourEndpoint> 取代為 Azure 入口網站中資源的值。

Windows 中的環境變數不區分大小寫。 這些變數通常會以大寫方式宣告,並加上底線聯結的字組。 在命令提示字元中,執行下列命令:

  1. 設定金鑰變數:

    setx DI_KEY <yourKey>
    
  2. 設定端點變數

    setx DI_ENDPOINT <yourEndpoint>
    
  3. 設定環境變數之後,請關閉 [命令提示字元] 視窗。 值會維持不變,直到您再次變更這些值為止。

  4. 重新啟動任何讀取環境變數的執行中程式。 例如,如果您使用 Visual Studio 或 Visual Studio Code 作為編輯器,則請在執行範例程式碼之前重新啟動。

以下是一些更實用的命令,可與環境變數搭配使用:

Command 動作 範例
setx VARIABLE_NAME= 將值設定為空字串,以刪除環境變數。 setx DI_KEY=
setx VARIABLE_NAME=value 設定或變更環境變數的值。 setx DI_KEY=<yourKey>
set VARIABLE_NAME 顯示特定環境變數的值。 set DI_KEY
set 顯示所有環境變數。 set

設定程式設計環境

若要設定程式設計環境,請建立 Gradle 專案並安裝用戶端程式庫。

建立 Gradle 專案

  1. 在主控台視窗中,為名為 form-recognizer-app 的應用程式建立目錄,並瀏覽至該目錄。

    mkdir form-recognizer-app
    cd form-recognizer-app
    
  2. 從您的工作目錄執行 gradle init 命令。 此命令會建立 Gradle 的基本組建檔案,包括 build.gradle.kts,將在執行階段使用 build.gradle.kts,來建立及設定應用程式。

    gradle init --type basic
    
  3. 出現選擇 DSL 的提示時,請選取 [Kotlin]

  4. 選取 Enter 以接受預設專案名稱,form-recognizer-app

安裝用戶端程式庫

本文使用 Gradle 相依性管理員。 您可以在 Maven 中央存放庫中找到用戶端程式庫和其他相依性管理員的資訊。

  1. 在 IDE 中開啟專案的 build.gradle.kts 檔案。 複製並貼上下列程式碼,以將用戶端程式庫做為 implementation 陳述式包含在內,並且加入必要的外掛程式和設定。

    plugins {
        java
        application
    }
    application {
        mainClass.set("FormRecognizer")
    }
    repositories {
        mavenCentral()
    }
    dependencies {
        implementation(group = "com.azure", name = "azure-ai-formrecognizer", version = "4.0.0")
    }
    

建立 Java 應用程式

若要與此文件智慧服務互動,請建立 DocumentAnalysisClient 類別的執行個體。 若要這樣做,請使用 key 從 Azure 入口網站建立 AzureKeyCredential,並使用 AzureKeyCredential 和文件智慧服務 endpoint 來建立 DocumentAnalysisClient 執行個體。

  1. form-recognizer-app 目錄,執行下列命令:

    mkdir -p src/main/java
    

    您會建立下列目錄結構:

    Java 目錄結構之螢幕擷取畫面

  2. 瀏覽至 java 目錄,並建立名為 FormRecognizer.java 的檔案。

    提示

    您可以使用 PowerShell 建立新檔案。 按住 Shift 鍵並在資料夾上以滑鼠右鍵按一下,以開啟專案目錄中的 PowerShell 視窗,然後輸入下列命令:New-Item FormRecognizer.java

  3. 開啟 FormRecognizer.java 檔案,然後選取下列其中一個程式碼範,並複製/貼入您的應用程式:

    • prebuilt-read 模型是所有文件智慧服務模型的核心,而且可以偵測行、字組、位置和語言。 版面配置、一般文件、預建和自訂模型全都使用 read 模型做為從文件擷取文字的基礎。
    • prebuilt-layout 模型會從文件和映像中擷取文字和文字位置、資料表、選取標記和結構資訊。
    • prebuilt-tax.us.w2 模型會擷取美國內部營收服務 (IRS) 稅務表單上所報告的資訊。
    • prebuilt-invoice 模型會以各種格式從銷售發票擷取重要欄位和明細行項目。
    • prebuilt-receipt 模型會擷取印刷和手寫銷售收據的重要資訊。
    • prebuilt-idDocument 模型會擷取美國駕照、國際護照個人資料頁、美國州別識別碼、社會安全卡和永久居民卡的重要資訊。
  4. 輸入下列命令:

    gradle build
    gradle -PmainClass=FormRecognizer run
    

使用讀取模型

import com.azure.ai.formrecognizer.*;

import com.azure.ai.formrecognizer.documentanalysis.models.*;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClient;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClientBuilder;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.util.List;
import java.util.Arrays;
import java.time.LocalDate;
import java.util.Map;
import java.util.stream.Collectors;

public class FormRecognizer {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
      DocumentAnalysisClient client = new DocumentAnalysisClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

//sample document
String documentUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/read.png";

String modelId = "prebuilt-read";

SyncPoller < OperationResult, AnalyzeResult > analyzeLayoutResultPoller =
  client.beginAnalyzeDocumentFromUrl(modelId, documentUrl);

AnalyzeResult analyzeLayoutResult = analyzeLayoutResultPoller.getFinalResult();

// pages
analyzeLayoutResult.getPages().forEach(documentPage -> {
  System.out.printf("Page has width: %.2f and height: %.2f, measured with unit: %s%n",
    documentPage.getWidth(),
    documentPage.getHeight(),
    documentPage.getUnit());

  // lines
  documentPage.getLines().forEach(documentLine ->
    System.out.printf("Line %s is within a bounding polygon %s.%n",
      documentLine.getContent(),
      documentLine.getBoundingPolygon().toString()));

  // words
  documentPage.getWords().forEach(documentWord ->
    System.out.printf("Word '%s' has a confidence score of %.2f.%n",
      documentWord.getContent(),
      documentWord.getConfidence()));
});
}
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視read模型輸出

使用版面配置模型

import com.azure.ai.formrecognizer.*;

import com.azure.ai.formrecognizer.documentanalysis.models.*;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClient;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClientBuilder;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.util.List;
import java.util.Arrays;
import java.time.LocalDate;
import java.util.Map;
import java.util.stream.Collectors;

public class FormRecognizer {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
      DocumentAnalysisClient client = new DocumentAnalysisClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

//sample document
String layoutDocumentUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/layout.png";
String modelId = "prebuilt-layout";

SyncPoller < OperationResult, AnalyzeResult > analyzeLayoutResultPoller =
  client.beginAnalyzeDocumentFromUrl(modelId, layoutDocumentUrl);

AnalyzeResult analyzeLayoutResult = analyzeLayoutResultPoller.getFinalResult();

// pages
analyzeLayoutResult.getPages().forEach(documentPage -> {
  System.out.printf("Page has width: %.2f and height: %.2f, measured with unit: %s%n",
    documentPage.getWidth(),
    documentPage.getHeight(),
    documentPage.getUnit());

  // lines
  documentPage.getLines().forEach(documentLine ->
    System.out.printf("Line %s is within a bounding polygon %s.%n",
      documentLine.getContent(),
      documentLine.getBoundingPolygon().toString()));

  // words
  documentPage.getWords().forEach(documentWord ->
    System.out.printf("Word '%s' has a confidence score of %.2f%n",
      documentWord.getContent(),
      documentWord.getConfidence()));

  // selection marks
  documentPage.getSelectionMarks().forEach(documentSelectionMark ->
    System.out.printf("Selection mark is '%s' and is within a bounding polygon %s with confidence %.2f.%n",
      documentSelectionMark.getSelectionMarkState().toString(),
      getBoundingCoordinates(documentSelectionMark.getBoundingPolygon()),
      documentSelectionMark.getConfidence()));
});

// tables
List < DocumentTable > tables = analyzeLayoutResult.getTables();
for (int i = 0; i < tables.size(); i++) {
  DocumentTable documentTables = tables.get(i);
  System.out.printf("Table %d has %d rows and %d columns.%n", i, documentTables.getRowCount(),
    documentTables.getColumnCount());
  documentTables.getCells().forEach(documentTableCell -> {
    System.out.printf("Cell '%s', has row index %d and column index %d.%n", documentTableCell.getContent(),
      documentTableCell.getRowIndex(), documentTableCell.getColumnIndex());
  });
  System.out.println();
}

}

// Utility function to get the bounding polygon coordinates.
private static String getBoundingCoordinates(List < Point > boundingPolygon) {
  return boundingPolygon.stream().map(point -> String.format("[%.2f, %.2f]", point.getX(),
    point.getY())).collect(Collectors.joining(", "));
}

}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視版面配置模型輸出

請使用一般文件模型

import com.azure.ai.formrecognizer.*;

import com.azure.ai.formrecognizer.documentanalysis.models.*;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClient;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClientBuilder;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.util.List;
import java.util.Arrays;
import java.time.LocalDate;
import java.util.Map;
import java.util.stream.Collectors;

public class FormRecognizer {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
      DocumentAnalysisClient client = new DocumentAnalysisClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

//sample document
String generalDocumentUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/sample-layout.pdf";
String modelId = "prebuilt-document";
SyncPoller < OperationResult, AnalyzeResult > analyzeDocumentPoller =
  client.beginAnalyzeDocumentFromUrl(modelId, generalDocumentUrl);

AnalyzeResult analyzeResult = analyzeDocumentPoller.getFinalResult();

// pages
analyzeResult.getPages().forEach(documentPage -> {
  System.out.printf("Page has width: %.2f and height: %.2f, measured with unit: %s%n",
    documentPage.getWidth(),
    documentPage.getHeight(),
    documentPage.getUnit());

  // lines
  documentPage.getLines().forEach(documentLine ->
    System.out.printf("Line %s is within a bounding polygon %s.%n",
      documentLine.getContent(),
      documentLine.getBoundingPolygon().toString()));

  // words
  documentPage.getWords().forEach(documentWord ->
    System.out.printf("Word %s has a confidence score of %.2f%n.",
      documentWord.getContent(),
      documentWord.getConfidence()));
});

// tables
List < DocumentTable > tab_les = analyzeResult.getTables();
for (int i = 0; i < tab_les.size(); i++) {
  DocumentTable documentTable = tab_les.get(i);
  System.out.printf("Table %d has %d rows and %d columns.%n", i, documentTable.getRowCount(),
    documentTable.getColumnCount());
  documentTable.getCells().forEach(documentTableCell -> {
    System.out.printf("Cell '%s', has row index %d and column index %d.%n",
      documentTableCell.getContent(),
      documentTableCell.getRowIndex(), documentTableCell.getColumnIndex());
  });
  System.out.println();
}

// Key-value pairs
analyzeResult.getKeyValuePairs().forEach(documentKeyValuePair -> {
  System.out.printf("Key content: %s%n", documentKeyValuePair.getKey().getContent());
  System.out.printf("Key content bounding region: %s%n",
    documentKeyValuePair.getKey().getBoundingRegions().toString());

  if (documentKeyValuePair.getValue() != null) {
    System.out.printf("Value content: %s%n", documentKeyValuePair.getValue().getContent());
    System.out.printf("Value content bounding region: %s%n", documentKeyValuePair.getValue().getBoundingRegions().toString());
  }
});

}

}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視一般文件模型輸出

使用 W-2 稅務模型

import com.azure.ai.formrecognizer.*;

import com.azure.ai.formrecognizer.documentanalysis.models.*;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClient;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClientBuilder;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.util.List;
import java.util.Arrays;
import java.time.LocalDate;
import java.util.Map;
import java.util.stream.Collectors;

public class FormRecognizer {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
      DocumentAnalysisClient client = new DocumentAnalysisClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

// sample document
String w2Url = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/w2.png";
String modelId = "prebuilt-tax.us.w2";

SyncPoller < OperationResult, AnalyzeResult > analyzeW2Poller =
  client.beginAnalyzeDocumentFromUrl(modelId, w2Url);

AnalyzeResult analyzeTaxResult = analyzeW2Poller.getFinalResult();

for (int i = 0; i < analyzeTaxResult.getDocuments().size(); i++) {
  AnalyzedDocument analyzedTaxDocument = analyzeTaxResult.getDocuments().get(i);
  Map < String, DocumentField > taxFields = analyzedTaxDocument.getFields();
  System.out.printf("----------- Analyzing Document  %d -----------%n", i);
  DocumentField w2FormVariantField = taxFields.get("W2FormVariant");
  if (w2FormVariantField != null) {
    if (DocumentFieldType.STRING == w2FormVariantField.getType()) {
      String merchantName = w2FormVariantField.getValueAsString();
      System.out.printf("Form variant: %s, confidence: %.2f%n",
        merchantName, w2FormVariantField.getConfidence());
    }
  }

  DocumentField employeeField = taxFields.get("Employee");
  if (employeeField != null) {
    System.out.println("Employee Data: ");
    if (DocumentFieldType.MAP == employeeField.getType()) {
      Map < String, DocumentField > employeeDataFieldMap = employeeField.getValueAsMap();
      DocumentField employeeName = employeeDataFieldMap.get("Name");
      if (employeeName != null) {
        if (DocumentFieldType.STRING == employeeName.getType()) {
          String employeesName = employeeName.getValueAsString();
          System.out.printf("Employee Name: %s, confidence: %.2f%n",
            employeesName, employeeName.getConfidence());
        }
      }
      DocumentField employeeAddrField = employeeDataFieldMap.get("Address");
      if (employeeAddrField != null) {
        if (DocumentFieldType.STRING == employeeAddrField.getType()) {
          String employeeAddress = employeeAddrField.getValueAsString();
          System.out.printf("Employee Address: %s, confidence: %.2f%n",
            employeeAddress, employeeAddrField.getConfidence());
        }
      }
    }
  }

  DocumentField employerField = taxFields.get("Employer");
  if (employerField != null) {
    System.out.println("Employer Data: ");
    if (DocumentFieldType.MAP == employerField.getType()) {
      Map < String, DocumentField > employerDataFieldMap = employerField.getValueAsMap();
      DocumentField employerNameField = employerDataFieldMap.get("Name");
      if (employerNameField != null) {
        if (DocumentFieldType.STRING == employerNameField.getType()) {
          String employerName = employerNameField.getValueAsString();
          System.out.printf("Employer Name: %s, confidence: %.2f%n",
            employerName, employerNameField.getConfidence());
        }
      }

      DocumentField employerIDNumberField = employerDataFieldMap.get("IdNumber");
      if (employerIDNumberField != null) {
        if (DocumentFieldType.STRING == employerIDNumberField.getType()) {
          String employerIdNumber = employerIDNumberField.getValueAsString();
          System.out.printf("Employee ID Number: %s, confidence: %.2f%n",
            employerIdNumber, employerIDNumberField.getConfidence());
        }
      }
    }
  }

  DocumentField taxYearField = taxFields.get("TaxYear");
  if (taxYearField != null) {
    if (DocumentFieldType.STRING == taxYearField.getType()) {
      String taxYear = taxYearField.getValueAsString();
      System.out.printf("Tax year: %s, confidence: %.2f%n",
        taxYear, taxYearField.getConfidence());
    }
  }

  DocumentField taxDateField = taxFields.get("TaxDate");
  if (taxDateField != null) {
    if (DocumentFieldType.DATE == taxDateField.getType()) {
      LocalDate taxDate = taxDateField.getValueAsDate();
      System.out.printf("Tax Date: %s, confidence: %.2f%n",
        taxDate, taxDateField.getConfidence());
    }
  }

  DocumentField socialSecurityTaxField = taxFields.get("SocialSecurityTaxWithheld");
  if (socialSecurityTaxField != null) {
    if (DocumentFieldType.DOUBLE == socialSecurityTaxField.getType()) {
      Double socialSecurityTax = socialSecurityTaxField.getValueAsDouble();
      System.out.printf("Social Security Tax withheld: %.2f, confidence: %.2f%n",
        socialSecurityTax, socialSecurityTaxField.getConfidence());
    }
  }
}
}
}

請造訪 GitHub 上的 Azure 範例存放庫,以檢視 W-2 稅務模型輸出

使用發票模型

import com.azure.ai.formrecognizer.*;

import com.azure.ai.formrecognizer.documentanalysis.models.*;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClient;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClientBuilder;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.util.List;
import java.util.Arrays;
import java.time.LocalDate;
import java.util.Map;
import java.util.stream.Collectors;

public class FormRecognizer {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
      DocumentAnalysisClient client = new DocumentAnalysisClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

// sample document
String invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/raw/master/curl/form-recognizer/rest-api/invoice.pdf";
String modelId = "prebuilt-invoice";

SyncPoller < OperationResult, AnalyzeResult > analyzeInvoicesPoller =
  client.beginAnalyzeDocumentFromUrl(modelId, invoiceUrl);

AnalyzeResult analyzeInvoiceResult = analyzeInvoicesPoller.getFinalResult();

for (int i = 0; i < analyzeInvoiceResult.getDocuments().size(); i++) {
  AnalyzedDocument analyzedInvoice = analyzeInvoiceResult.getDocuments().get(i);
  Map < String, DocumentField > invoiceFields = analyzedInvoice.getFields();
  System.out.printf("----------- Analyzing invoice  %d -----------%n", i);
  DocumentField vendorNameField = invoiceFields.get("VendorName");
  if (vendorNameField != null) {
    if (DocumentFieldType.STRING == vendorNameField.getType()) {
      String merchantName = vendorNameField.getValueAsString();
      System.out.printf("Vendor Name: %s, confidence: %.2f%n",
        merchantName, vendorNameField.getConfidence());
    }
  }

  DocumentField vendorAddressField = invoiceFields.get("VendorAddress");
  if (vendorAddressField != null) {
    if (DocumentFieldType.STRING == vendorAddressField.getType()) {
      String merchantAddress = vendorAddressField.getValueAsString();
      System.out.printf("Vendor address: %s, confidence: %.2f%n",
        merchantAddress, vendorAddressField.getConfidence());
    }
  }

  DocumentField customerNameField = invoiceFields.get("CustomerName");
  if (customerNameField != null) {
    if (DocumentFieldType.STRING == customerNameField.getType()) {
      String merchantAddress = customerNameField.getValueAsString();
      System.out.printf("Customer Name: %s, confidence: %.2f%n",
        merchantAddress, customerNameField.getConfidence());
    }
  }

  DocumentField customerAddressRecipientField = invoiceFields.get("CustomerAddressRecipient");
  if (customerAddressRecipientField != null) {
    if (DocumentFieldType.STRING == customerAddressRecipientField.getType()) {
      String customerAddr = customerAddressRecipientField.getValueAsString();
      System.out.printf("Customer Address Recipient: %s, confidence: %.2f%n",
        customerAddr, customerAddressRecipientField.getConfidence());
    }
  }

  DocumentField invoiceIdField = invoiceFields.get("InvoiceId");
  if (invoiceIdField != null) {
    if (DocumentFieldType.STRING == invoiceIdField.getType()) {
      String invoiceId = invoiceIdField.getValueAsString();
      System.out.printf("Invoice ID: %s, confidence: %.2f%n",
        invoiceId, invoiceIdField.getConfidence());
    }
  }

  DocumentField invoiceDateField = invoiceFields.get("InvoiceDate");
  if (customerNameField != null) {
    if (DocumentFieldType.DATE == invoiceDateField.getType()) {
      LocalDate invoiceDate = invoiceDateField.getValueAsDate();
      System.out.printf("Invoice Date: %s, confidence: %.2f%n",
        invoiceDate, invoiceDateField.getConfidence());
    }
  }

  DocumentField invoiceTotalField = invoiceFields.get("InvoiceTotal");
  if (customerAddressRecipientField != null) {
    if (DocumentFieldType.DOUBLE == invoiceTotalField.getType()) {
      Double invoiceTotal = invoiceTotalField.getValueAsDouble();
      System.out.printf("Invoice Total: %.2f, confidence: %.2f%n",
        invoiceTotal, invoiceTotalField.getConfidence());
    }
  }

  DocumentField invoiceItemsField = invoiceFields.get("Items");
  if (invoiceItemsField != null) {
    System.out.printf("Invoice Items: %n");
    if (DocumentFieldType.LIST == invoiceItemsField.getType()) {
      List < DocumentField > invoiceItems = invoiceItemsField.getValueAsList();
      invoiceItems.stream()
        .filter(invoiceItem -> DocumentFieldType.MAP == invoiceItem.getType())
        .map(documentField -> documentField.getValueAsMap())
        .forEach(documentFieldMap -> documentFieldMap.forEach((key, documentField) -> {
          if ("Description".equals(key)) {
            if (DocumentFieldType.STRING == documentField.getType()) {
              String name = documentField.getValueAsString();
              System.out.printf("Description: %s, confidence: %.2fs%n",
                name, documentField.getConfidence());
            }
          }
          if ("Quantity".equals(key)) {
            if (DocumentFieldType.DOUBLE == documentField.getType()) {
              Double quantity = documentField.getValueAsDouble();
              System.out.printf("Quantity: %f, confidence: %.2f%n",
                quantity, documentField.getConfidence());
            }
          }
          if ("UnitPrice".equals(key)) {
            if (DocumentFieldType.DOUBLE == documentField.getType()) {
              Double unitPrice = documentField.getValueAsDouble();
              System.out.printf("Unit Price: %f, confidence: %.2f%n",
                unitPrice, documentField.getConfidence());
            }
          }
          if ("ProductCode".equals(key)) {
            if (DocumentFieldType.DOUBLE == documentField.getType()) {
              Double productCode = documentField.getValueAsDouble();
              System.out.printf("Product Code: %f, confidence: %.2f%n",
                productCode, documentField.getConfidence());
            }
          }
        }));
    }
  }
}
}
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視發票模型輸出

使用收據模型

import com.azure.ai.formrecognizer.*;

import com.azure.ai.formrecognizer.documentanalysis.models.*;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClient;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClientBuilder;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.util.List;
import java.util.Arrays;
import java.time.LocalDate;
import java.util.Map;
import java.util.stream.Collectors;

public class FormRecognizer {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
      DocumentAnalysisClient client = new DocumentAnalysisClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

String receiptUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/receipt.png";
String modelId = "prebuilt-receipt";

SyncPoller < OperationResult, AnalyzeResult > analyzeReceiptPoller =
  client.beginAnalyzeDocumentFromUrl(modelId, receiptUrl);

AnalyzeResult receiptResults = analyzeReceiptPoller.getFinalResult();

for (int i = 0; i < receiptResults.getDocuments().size(); i++) {
  AnalyzedDocument analyzedReceipt = receiptResults.getDocuments().get(i);
  Map < String, DocumentField > receiptFields = analyzedReceipt.getFields();
  System.out.printf("----------- Analyzing receipt info %d -----------%n", i);
  DocumentField merchantNameField = receiptFields.get("MerchantName");
  if (merchantNameField != null) {
    if (DocumentFieldType.STRING == merchantNameField.getType()) {
      String merchantName = merchantNameField.getValueAsString();
      System.out.printf("Merchant Name: %s, confidence: %.2f%n",
        merchantName, merchantNameField.getConfidence());
    }
  }

  DocumentField merchantPhoneNumberField = receiptFields.get("MerchantPhoneNumber");
  if (merchantPhoneNumberField != null) {
    if (DocumentFieldType.PHONE_NUMBER == merchantPhoneNumberField.getType()) {
      String merchantAddress = merchantPhoneNumberField.getValueAsPhoneNumber();
      System.out.printf("Merchant Phone number: %s, confidence: %.2f%n",
        merchantAddress, merchantPhoneNumberField.getConfidence());
    }
  }

  DocumentField merchantAddressField = receiptFields.get("MerchantAddress");
  if (merchantAddressField != null) {
    if (DocumentFieldType.STRING == merchantAddressField.getType()) {
      String merchantAddress = merchantAddressField.getValueAsString();
      System.out.printf("Merchant Address: %s, confidence: %.2f%n",
        merchantAddress, merchantAddressField.getConfidence());
    }
  }

  DocumentField transactionDateField = receiptFields.get("TransactionDate");
  if (transactionDateField != null) {
    if (DocumentFieldType.DATE == transactionDateField.getType()) {
      LocalDate transactionDate = transactionDateField.getValueAsDate();
      System.out.printf("Transaction Date: %s, confidence: %.2f%n",
        transactionDate, transactionDateField.getConfidence());
    }
  }

  DocumentField receiptItemsField = receiptFields.get("Items");
  if (receiptItemsField != null) {
    System.out.printf("Receipt Items: %n");
    if (DocumentFieldType.LIST == receiptItemsField.getType()) {
      List < DocumentField > receiptItems = receiptItemsField.getValueAsList();
      receiptItems.stream()
        .filter(receiptItem -> DocumentFieldType.MAP == receiptItem.getType())
        .map(documentField -> documentField.getValueAsMap())
        .forEach(documentFieldMap -> documentFieldMap.forEach((key, documentField) -> {
          if ("Name".equals(key)) {
            if (DocumentFieldType.STRING == documentField.getType()) {
              String name = documentField.getValueAsString();
              System.out.printf("Name: %s, confidence: %.2fs%n",
                name, documentField.getConfidence());
            }
          }
          if ("Quantity".equals(key)) {
            if (DocumentFieldType.DOUBLE == documentField.getType()) {
              Double quantity = documentField.getValueAsDouble();
              System.out.printf("Quantity: %f, confidence: %.2f%n",
                quantity, documentField.getConfidence());
            }
          }
          if ("Price".equals(key)) {
            if (DocumentFieldType.DOUBLE == documentField.getType()) {
              Double price = documentField.getValueAsDouble();
              System.out.printf("Price: %f, confidence: %.2f%n",
                price, documentField.getConfidence());
            }
          }
          if ("TotalPrice".equals(key)) {
            if (DocumentFieldType.DOUBLE == documentField.getType()) {
              Double totalPrice = documentField.getValueAsDouble();
              System.out.printf("Total Price: %f, confidence: %.2f%n",
                totalPrice, documentField.getConfidence());
            }
          }
        }));
    }
  }
}
}
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視收據模型輸出

使用身分證明文件模型

import com.azure.ai.formrecognizer.*;

import com.azure.ai.formrecognizer.documentanalysis.models.*;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClient;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClientBuilder;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.util.List;
import java.util.Arrays;
import java.time.LocalDate;
import java.util.Map;
import java.util.stream.Collectors;

public class FormRecognizer {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
      DocumentAnalysisClient client = new DocumentAnalysisClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

//sample document
String licenseUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/identity_documents.png";
String modelId = "prebuilt-idDocument";

SyncPoller < OperationResult, AnalyzeResult > analyzeIdentityDocumentPoller = client.beginAnalyzeDocumentFromUrl(modelId, licenseUrl);

AnalyzeResult identityDocumentResults = analyzeIdentityDocumentPoller.getFinalResult();

for (int i = 0; i < identityDocumentResults.getDocuments().size(); i++) {
  AnalyzedDocument analyzedIDDocument = identityDocumentResults.getDocuments().get(i);
  Map < String, DocumentField > licenseFields = analyzedIDDocument.getFields();
  System.out.printf("----------- Analyzed license info for page %d -----------%n", i);
  DocumentField addressField = licenseFields.get("Address");
  if (addressField != null) {
    if (DocumentFieldType.STRING == addressField.getType()) {
      String address = addressField.getValueAsString();
      System.out.printf("Address: %s, confidence: %.2f%n",
        address, addressField.getConfidence());
    }
  }

  DocumentField countryRegionDocumentField = licenseFields.get("CountryRegion");
  if (countryRegionDocumentField != null) {
    if (DocumentFieldType.STRING == countryRegionDocumentField.getType()) {
      String countryRegion = countryRegionDocumentField.getValueAsCountry();
      System.out.printf("Country or region: %s, confidence: %.2f%n",
        countryRegion, countryRegionDocumentField.getConfidence());
    }
  }

  DocumentField dateOfBirthField = licenseFields.get("DateOfBirth");
  if (dateOfBirthField != null) {
    if (DocumentFieldType.DATE == dateOfBirthField.getType()) {
      LocalDate dateOfBirth = dateOfBirthField.getValueAsDate();
      System.out.printf("Date of Birth: %s, confidence: %.2f%n",
        dateOfBirth, dateOfBirthField.getConfidence());
    }
  }

  DocumentField dateOfExpirationField = licenseFields.get("DateOfExpiration");
  if (dateOfExpirationField != null) {
    if (DocumentFieldType.DATE == dateOfExpirationField.getType()) {
      LocalDate expirationDate = dateOfExpirationField.getValueAsDate();
      System.out.printf("Document date of expiration: %s, confidence: %.2f%n",
        expirationDate, dateOfExpirationField.getConfidence());
    }
  }

  DocumentField documentNumberField = licenseFields.get("DocumentNumber");
  if (documentNumberField != null) {
    if (DocumentFieldType.STRING == documentNumberField.getType()) {
      String documentNumber = documentNumberField.getValueAsString();
      System.out.printf("Document number: %s, confidence: %.2f%n",
        documentNumber, documentNumberField.getConfidence());
    }
  }

  DocumentField firstNameField = licenseFields.get("FirstName");
  if (firstNameField != null) {
    if (DocumentFieldType.STRING == firstNameField.getType()) {
      String firstName = firstNameField.getValueAsString();
      System.out.printf("First Name: %s, confidence: %.2f%n",
        firstName, documentNumberField.getConfidence());
    }
  }

  DocumentField lastNameField = licenseFields.get("LastName");
  if (lastNameField != null) {
    if (DocumentFieldType.STRING == lastNameField.getType()) {
      String lastName = lastNameField.getValueAsString();
      System.out.printf("Last name: %s, confidence: %.2f%n",
        lastName, lastNameField.getConfidence());
    }
  }

  DocumentField regionField = licenseFields.get("Region");
  if (regionField != null) {
    if (DocumentFieldType.STRING == regionField.getType()) {
      String region = regionField.getValueAsString();
      System.out.printf("Region: %s, confidence: %.2f%n",
        region, regionField.getConfidence());
    }
  }
}
}
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視 id-document 模型輸出

使用名片模型

import com.azure.ai.formrecognizer.*;

import com.azure.ai.formrecognizer.documentanalysis.models.*;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClient;
import com.azure.ai.formrecognizer.documentanalysis.DocumentAnalysisClientBuilder;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.polling.SyncPoller;

import java.io.IOException;
import java.util.List;
import java.util.Arrays;
import java.time.LocalDate;
import java.util.Map;
import java.util.stream.Collectors;

public class FormRecognizer {
  //use your `key` and `endpoint` environment variables
  private static final String key = System.getenv("FR_KEY");
  private static final String endpoint = System.getenv("FR_ENDPOINT");

  public static void main(final String[] args) {

      // create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
      DocumentAnalysisClient client = new DocumentAnalysisClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();

//sample document
String businessCardUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/de5e0d8982ab754823c54de47a47e8e499351523/curl/form-recognizer/rest-api/business_card.jpg";
String modelId = "prebuilt-businessCard";

SyncPoller < OperationResult, AnalyzeResult > analyzeBusinessCardPoller = client.beginAnalyzeDocumentFromUrl(modelId, businessCardUrl);

AnalyzeResult businessCardPageResults = analyzeBusinessCardPoller.getFinalResult();

for (int i = 0; i < businessCardPageResults.getDocuments().size(); i++) {
  System.out.printf("--------Analyzing business card %d -----------%n", i);
  AnalyzedDocument analyzedBusinessCard = businessCardPageResults.getDocuments().get(i);
  Map < String, DocumentField > businessCardFields = analyzedBusinessCard.getFields();
  DocumentField contactNamesDocumentField = businessCardFields.get("ContactNames");
  if (contactNamesDocumentField != null) {
    if (DocumentFieldType.LIST == contactNamesDocumentField.getType()) {
      List < DocumentField > contactNamesList = contactNamesDocumentField.getValueAsList();
      contactNamesList.stream()
        .filter(contactName -> DocumentFieldType.MAP == contactName.getType())
        .map(contactName -> {
          System.out.printf("Contact name: %s%n", contactName.getContent());
          return contactName.getValueAsMap();
        })
        .forEach(contactNamesMap -> contactNamesMap.forEach((key, contactName) -> {
          if ("FirstName".equals(key)) {
            if (DocumentFieldType.STRING == contactName.getType()) {
              String firstName = contactName.getValueAsString();
              System.out.printf("\tFirst Name: %s, confidence: %.2f%n",
                firstName, contactName.getConfidence());
            }
          }
          if ("LastName".equals(key)) {
            if (DocumentFieldType.STRING == contactName.getType()) {
              String lastName = contactName.getValueAsString();
              System.out.printf("\tLast Name: %s, confidence: %.2f%n",
                lastName, contactName.getConfidence());
            }
          }
        }));
    }
  }

  DocumentField jobTitles = businessCardFields.get("JobTitles");
  if (jobTitles != null) {
    if (DocumentFieldType.LIST == jobTitles.getType()) {
      List < DocumentField > jobTitlesItems = jobTitles.getValueAsList();
      jobTitlesItems.forEach(jobTitlesItem -> {
        if (DocumentFieldType.STRING == jobTitlesItem.getType()) {
          String jobTitle = jobTitlesItem.getValueAsString();
          System.out.printf("Job Title: %s, confidence: %.2f%n",
            jobTitle, jobTitlesItem.getConfidence());
        }
      });
    }
  }

  DocumentField departments = businessCardFields.get("Departments");
  if (departments != null) {
    if (DocumentFieldType.LIST == departments.getType()) {
      List < DocumentField > departmentsItems = departments.getValueAsList();
      departmentsItems.forEach(departmentsItem -> {
        if (DocumentFieldType.STRING == departmentsItem.getType()) {
          String department = departmentsItem.getValueAsString();
          System.out.printf("Department: %s, confidence: %.2f%n",
            department, departmentsItem.getConfidence());
        }
      });
    }
  }

  DocumentField emails = businessCardFields.get("Emails");
  if (emails != null) {
    if (DocumentFieldType.LIST == emails.getType()) {
      List < DocumentField > emailsItems = emails.getValueAsList();
      emailsItems.forEach(emailsItem -> {
        if (DocumentFieldType.STRING == emailsItem.getType()) {
          String email = emailsItem.getValueAsString();
          System.out.printf("Email: %s, confidence: %.2f%n", email, emailsItem.getConfidence());
        }
      });
    }
  }

  DocumentField websites = businessCardFields.get("Websites");
  if (websites != null) {
    if (DocumentFieldType.LIST == websites.getType()) {
      List < DocumentField > websitesItems = websites.getValueAsList();
      websitesItems.forEach(websitesItem -> {
        if (DocumentFieldType.STRING == websitesItem.getType()) {
          String website = websitesItem.getValueAsString();
          System.out.printf("Web site: %s, confidence: %.2f%n",
            website, websitesItem.getConfidence());
        }
      });
    }
  }

  DocumentField mobilePhones = businessCardFields.get("MobilePhones");
  if (mobilePhones != null) {
    if (DocumentFieldType.LIST == mobilePhones.getType()) {
      List < DocumentField > mobilePhonesItems = mobilePhones.getValueAsList();
      mobilePhonesItems.forEach(mobilePhonesItem -> {
        if (DocumentFieldType.PHONE_NUMBER == mobilePhonesItem.getType()) {
          String mobilePhoneNumber = mobilePhonesItem.getValueAsPhoneNumber();
          System.out.printf("Mobile phone number: %s, confidence: %.2f%n",
            mobilePhoneNumber, mobilePhonesItem.getConfidence());
        }
      });
    }
  }

  DocumentField otherPhones = businessCardFields.get("OtherPhones");
  if (otherPhones != null) {
    if (DocumentFieldType.LIST == otherPhones.getType()) {
      List < DocumentField > otherPhonesItems = otherPhones.getValueAsList();
      otherPhonesItems.forEach(otherPhonesItem -> {
        if (DocumentFieldType.PHONE_NUMBER == otherPhonesItem.getType()) {
          String otherPhoneNumber = otherPhonesItem.getValueAsPhoneNumber();
          System.out.printf("Other phone number: %s, confidence: %.2f%n",
            otherPhoneNumber, otherPhonesItem.getConfidence());
        }
      });
    }
  }

  DocumentField faxes = businessCardFields.get("Faxes");
  if (faxes != null) {
    if (DocumentFieldType.LIST == faxes.getType()) {
      List < DocumentField > faxesItems = faxes.getValueAsList();
      faxesItems.forEach(faxesItem -> {
        if (DocumentFieldType.PHONE_NUMBER == faxesItem.getType()) {
          String faxPhoneNumber = faxesItem.getValueAsPhoneNumber();
          System.out.printf("Fax phone number: %s, confidence: %.2f%n",
            faxPhoneNumber, faxesItem.getConfidence());
        }
      });
    }
  }

  DocumentField addresses = businessCardFields.get("Addresses");
  if (addresses != null) {
    if (DocumentFieldType.LIST == addresses.getType()) {
      List < DocumentField > addressesItems = addresses.getValueAsList();
      addressesItems.forEach(addressesItem -> {
        if (DocumentFieldType.STRING == addressesItem.getType()) {
          String address = addressesItem.getValueAsString();
          System.out
            .printf("Address: %s, confidence: %.2f%n", address, addressesItem.getConfidence());
        }
      });
    }
  }

  DocumentField companyName = businessCardFields.get("CompanyNames");
  if (companyName != null) {
    if (DocumentFieldType.LIST == companyName.getType()) {
      List < DocumentField > companyNameItems = companyName.getValueAsList();
      companyNameItems.forEach(companyNameItem -> {
        if (DocumentFieldType.STRING == companyNameItem.getType()) {
          String companyNameValue = companyNameItem.getValueAsString();
          System.out.printf("Company name: %s, confidence: %.2f%n", companyNameValue,
            companyNameItem.getConfidence());
        }
      });
    }
  }
}
}
}

請造訪 GitHub 上的 Azure 範例存放庫,並檢視名片模型輸出

用戶端程式庫 (英文) | REST API 參考 (部分機器翻譯) | 套件 (npm) (英文) | 範例 (英文) |支援的 REST API 版本 (部分機器翻譯)

必要條件

  • Azure 訂用帳戶 - 建立免費帳戶

  • 最新的 Visual Studio Code 版本或您慣用的 IDE。 如需詳細資訊,請參閱 Visual Studio Code 中的 Node.js

  • 最新LTS版的 Node.js (英文)。

  • Azure AI 服務或文件智慧服務資源。 建立 single-servicemulti-service。 您可以使用免費定價層 (F0) 來試用服務,之後可升級至付費層以用於實際執行環境。

    提示

    如果您打算使用單一端點和金鑰存取多個 Azure AI 服務,請建立 Azure AI 服務資源。 若為僅限文件智慧服務存取,請建立文件智慧服務資源。 如果您想要使用 Microsoft Entra 驗證,則需要使用單一服務資源。

  • 從您所建立資源的金鑰和端點,將應用程式連線至 Azure 文件智慧服務。

    1. 部署資源之後,請選取 [移至資源]
    2. 在左側導覽功能表中,選取 [金鑰和端點]。
    3. 複製其中一個金鑰和 [端點],以供稍後在本文中使用。

    Azure 入口網站中金鑰與端點位置的螢幕擷取畫面。

  • URL 的文件檔案。 在本專案中,您可以使用下表中針對每個功能所提供的範例表單:

    功能 modelID document-url
    Read 模型 prebuilt-read 範例手冊
    版面配置模型 prebuilt-layout 範例預約確認
    W-2 表單模型 prebuilt-tax.us.w2 範例 W-2 表單
    發票模型 prebuilt-invoice 發票範例
    收據模型 prebuilt-receipt 範例收據
    識別碼文件模型 prebuilt-idDocument 範例身分證明文件

設定環境變數

若要與此文件智慧服務互動,您必須建立 DocumentAnalysisClient 類別的執行個體。 若要這樣做,請使用 keyendpoint 以從 Azure 入口網站將用戶端具現化。 在此專案中,使用環境變數來儲存和存取認證。

重要

如果您使用 API 金鑰,請將其安全地儲存在別處,例如 Azure Key Vault。 請勿在程式碼中直接包含 API 金鑰,且切勿公開張貼金鑰。

如需 AI 服務安全性的詳細資訊,請參閱驗證對 Azure AI 服務的要求

若要設定文件智慧服務資源金鑰的環境變數,請開啟主控台視窗,並遵循作業系統和開發環境的指示進行。 將 <yourKey><yourEndpoint> 取代為 Azure 入口網站中資源的值。

Windows 中的環境變數不區分大小寫。 這些變數通常會以大寫方式宣告,並加上底線聯結的字組。 在命令提示字元中,執行下列命令:

  1. 設定金鑰變數:

    setx DI_KEY <yourKey>
    
  2. 設定端點變數

    setx DI_ENDPOINT <yourEndpoint>
    
  3. 設定環境變數之後,請關閉 [命令提示字元] 視窗。 值會維持不變,直到您再次變更這些值為止。

  4. 重新啟動任何讀取環境變數的執行中程式。 例如,如果您使用 Visual Studio 或 Visual Studio Code 作為編輯器,則請在執行範例程式碼之前重新啟動。

以下是一些更實用的命令,可與環境變數搭配使用:

Command 動作 範例
setx VARIABLE_NAME= 將值設定為空字串,以刪除環境變數。 setx DI_KEY=
setx VARIABLE_NAME=value 設定或變更環境變數的值。 setx DI_KEY=<yourKey>
set VARIABLE_NAME 顯示特定環境變數的值。 set DI_KEY
set 顯示所有環境變數。 set

設定程式設計環境

建立 Node.js Express 應用程式。

  1. 在主控台視窗中,為您的應用程式建立名為 doc-intel-app 的新目錄,並瀏覽至該目錄。

    mkdir doc-intel-app
    cd doc-intel-app
    
  2. 執行 npm init 命令來初始化應用程式,並建構您的專案。

    npm init
    
  3. 使用終端機中顯示的提示來指定專案的屬性。

    • 名稱、版本號碼和進入點是最重要的屬性。
    • 建議為進入點名稱保留 index.js。 描述、測試命令、GitHub 存放庫、關鍵字、作者和授權資訊皆為選擇性屬性。 在此專案中可以跳過。
    • 選取 Enter 以接受括號中的建議。

    完成提示後,將會在 doc-intel-app 目錄中建立 package.json 檔案。

  4. 安裝 ai-document-intelligence 用戶端程式庫和 azure/identity npm 套件:

    npm i @azure-rest/ai-document-intelligence@1.0.0-beta.3 @azure/identity
    

您應用程式的 package.json 檔案會隨著相依項目更新。

  1. 在應用程式目錄中建立名為 index.js 的檔案。

    提示

    您可以使用 PowerShell 建立新檔案。 按住 Shift 鍵並在資料夾上以滑鼠右鍵按一下,以開啟專案目錄中的 PowerShell 視窗,然後輸入下列命令:New-Item index.js

建置您的 應用程式

若要與此文件智慧服務互動,您必須建立 DocumentIntelligenceClient 類別的執行個體。 若要這樣做,請使用您的金鑰從 Azure 入口網站建立 AzureKeyCredential,並使用 AzureKeyCredential 和文件智慧服務端點來建立 DocumentIntelligenceClient 執行個體。

在 Visual Studio Code 或您偏好的 IDE 中開啟 index.js 檔案,然後選取下列其中一個程式碼範例,並複製/貼至您的應用程式:

  • prebuilt-read 模型是所有文件智慧服務模型的核心,而且可以偵測行、字組、位置和語言。 版面配置、一般文件、預建和自訂模型全都使用 read 模型做為從文件擷取文字的基礎。
  • prebuilt-layout 模型會從文件和映像中擷取文字和文字位置、資料表、選取標記和結構資訊。
  • prebuilt-tax.us.w2 模型會擷取美國內部營收服務 (IRS) 稅務表單上所報告的資訊。
  • prebuilt-invoice 模型會擷取美國國稅局 (IRS) 稅務表單上所報告的資訊。
  • prebuilt-receipt 模型會擷取印刷和手寫銷售收據的重要資訊。
  • prebuilt-idDocument 模型會擷取美國駕照、國際護照個人資料頁、美國州別識別碼、社會安全卡和永久居民卡的重要資訊。

使用讀取模型

const { DocumentIntelligenceClient } = require("@azure-rest/ai-document-intelligence");
const  { AzureKeyCredential } = require("@azure/core-auth");

//use your `key` and `endpoint` environment variables
const key = process.env['DI_KEY'];
const endpoint = process.env['DI_ENDPOINT'];

// sample document
const documentUrlRead = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/read.png"

// helper function
function* getTextOfSpans(content, spans) {
    for (const span of spans) {
        yield content.slice(span.offset, span.offset + span.length);
    }
}

async function main() {
    // create your `DocumentIntelligenceClient` instance and `AzureKeyCredential` variable
    const client = DocumentIntelligence(endpoint, new AzureKeyCredential(key));
    const poller = await client.beginAnalyzeDocument("prebuilt-read", documentUrlRead);

    const {
        content,
        pages,
        languages,
        styles
    } = await poller.pollUntilDone();

    if (pages.length <= 0) {
        console.log("No pages were extracted from the document.");
    } else {
        console.log("Pages:");
        for (const page of pages) {
            console.log("- Page", page.pageNumber, `(unit: ${page.unit})`);
            console.log(`  ${page.width}x${page.height}, angle: ${page.angle}`);
            console.log(`  ${page.lines.length} lines, ${page.words.length} words`);

            if (page.lines.length > 0) {
                console.log("  Lines:");

                for (const line of page.lines) {
                    console.log(`  - "${line.content}"`);

                    // The words of the line can also be iterated independently. The words are computed based on their
                    // corresponding spans.
                    for (const word of line.words()) {
                        console.log(`    - "${word.content}"`);
                    }
                }
            }
        }
    }

    if (languages.length <= 0) {
        console.log("No language spans were extracted from the document.");
    } else {
        console.log("Languages:");
        for (const languageEntry of languages) {
            console.log(
                `- Found language: ${languageEntry.languageCode} (confidence: ${languageEntry.confidence})`
            );
            for (const text of getTextOfSpans(content, languageEntry.spans)) {
                const escapedText = text.replace(/\r?\n/g, "\\n").replace(/"/g, '\\"');
                console.log(`  - "${escapedText}"`);
            }
        }
    }

    if (styles.length <= 0) {
        console.log("No text styles were extracted from the document.");
    } else {
        console.log("Styles:");
        for (const style of styles) {
            console.log(
                `- Handwritten: ${style.isHandwritten ? "yes" : "no"} (confidence=${style.confidence})`
            );

            for (const word of getTextOfSpans(content, style.spans)) {
                console.log(`  - "${word}"`);
            }
        }
    }
}

main().catch((error) => {
    console.error("An error occurred:", error);
    process.exit(1);
});

請造訪 GitHub 上的 Azure 範例存放庫,並檢視read模型輸出

使用版面配置模型

const { DocumentIntelligenceClient } = require("@azure-rest/ai-document-intelligence");
const  { AzureKeyCredential } = require("@azure/core-auth");

//use your `key` and `endpoint` environment variables
const key = process.env['DI_KEY'];
const endpoint = process.env['DI_ENDPOINT'];

// sample document
const layoutUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/layout.png"

async function main() {
    const client = DocumentIntelligence(endpoint, new AzureKeyCredential(key));

    const poller = await client.beginAnalyzeDocument(
      "prebuilt-layout", layoutUrl);

    // Layout extraction produces basic elements such as pages, words, lines, etc. as well as information about the
    // appearance (styles) of textual elements.
    const { pages, tables } = await poller.pollUntilDone();

    if (!pages || pages.length <= 0) {
      console.log("No pages were extracted from the document.");
    } else {
      console.log("Pages:");
      for (const page of pages) {
        console.log("- Page", page.pageNumber, `(unit: ${page.unit})`);
        console.log(`  ${page.width}x${page.height}, angle: ${page.angle}`);
        console.log(
          `  ${page.lines && page.lines.length} lines, ${page.words && page.words.length} words`
        );

        if (page.lines && page.lines.length > 0) {
          console.log("  Lines:");

          for (const line of page.lines) {
            console.log(`  - "${line.content}"`);

            // The words of the line can also be iterated independently. The words are computed based on their
            // corresponding spans.
            for (const word of line.words()) {
              console.log(`    - "${word.content}"`);
            }
          }
        }
      }
    }

    if (!tables || tables.length <= 0) {
      console.log("No tables were extracted from the document.");
    } else {
      console.log("Tables:");
      for (const table of tables) {
        console.log(
          `- Extracted table: ${table.columnCount} columns, ${table.rowCount} rows (${table.cells.length} cells)`
        );
      }
    }
  }

  main().catch((error) => {
    console.error("An error occurred:", error);
    process.exit(1);
  });

請造訪 GitHub 上的 Azure 範例存放庫,並檢視版面配置模型輸出

請使用一般文件模型

const { DocumentIntelligenceClient } = require("@azure-rest/ai-document-intelligence");
const  { AzureKeyCredential } = require("@azure/core-auth");

//use your `key` and `endpoint` environment variables
const key = process.env['DI_KEY'];
const endpoint = process.env['DI_ENDPOINT'];

// sample document
const documentUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/sample-layout.pdf"

async function main() {
    const client = DocumentIntelligence(endpoint, new AzureKeyCredential(key));

    const poller = await client.beginAnalyzeDocument("prebuilt-document", documentUrl);

    const {
        keyValuePairs
    } = await poller.pollUntilDone();

    if (!keyValuePairs || keyValuePairs.length <= 0) {
        console.log("No key-value pairs were extracted from the document.");
    } else {
        console.log("Key-Value Pairs:");
        for (const {
                key,
                value,
                confidence
            } of keyValuePairs) {
            console.log("- Key  :", `"${key.content}"`);
            console.log("  Value:", `"${(value && value.content) || "<undefined>"}" (${confidence})`);
        }
    }

}

main().catch((error) => {
    console.error("An error occurred:", error);
    process.exit(1);
});

請造訪 GitHub 上的 Azure 範例存放庫,並檢視一般文件模型輸出

使用 W-2 稅務模型

const { DocumentIntelligenceClient } = require("@azure-rest/ai-document-intelligence");
const  { AzureKeyCredential } = require("@azure/core-auth");

//use your `key` and `endpoint` environment variables
const key = process.env['DI_KEY'];
const endpoint = process.env['DI_ENDPOINT'];

const w2DocumentURL = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/w2.png"

async function main() {
 const client = DocumentIntelligence(endpoint, new AzureKeyCredential(key));

 const poller = await client.beginAnalyzeDocument("prebuilt-tax.us.w2", w2DocumentURL);

 const {
   documents: [result]
 } = await poller.pollUntilDone();

  if (result) {
    const { Employee, Employer, ControlNumber, TaxYear, AdditionalInfo } = result.fields;

    if (Employee) {
      const { Name, Address, SocialSecurityNumber } = Employee.properties;
      console.log("Employee:");
      console.log("  Name:", Name && Name.content);
      console.log("  SSN/TIN:", SocialSecurityNumber && SocialSecurityNumber.content);
      if (Address && Address.value) {
        const { streetAddress, postalCode } = Address.value;
        console.log("  Address:");
        console.log("    Street Address:", streetAddress);
        console.log("    Postal Code:", postalCode);
      }
    } else {
      console.log("No employee information extracted.");
    }

    if (Employer) {
      const { Name, Address, IdNumber } = Employer.properties;
      console.log("Employer:");
      console.log("  Name:", Name && Name.content);
      console.log("  ID (EIN):", IdNumber && IdNumber.content);

      if (Address && Address.value) {
        const { streetAddress, postalCode } = Address.value;
        console.log("  Address:");
        console.log("    Street Address:", streetAddress);
        console.log("    Postal Code:", postalCode);
      }
    } else {
      console.log("No employer information extracted.");
    }

    console.log("Control Number:", ControlNumber && ControlNumber.content);
    console.log("Tax Year:", TaxYear && TaxYear.content);

    if (AdditionalInfo) {
      console.log("Additional Info:");

      for (const info of AdditionalInfo.values) {
        const { LetterCode, Amount } = info.properties;
        console.log(`- ${LetterCode && LetterCode.content}: ${Amount && Amount.content}`);
      }
    }
  } else {
    throw new Error("Expected at least one document in the result.");
  }
}

main().catch((error) => {
  console.error(error);
  process.exit(1);
});

請造訪 GitHub 上的 Azure 範例存放庫,以檢視 W-2 稅務模型輸出

使用發票模型

const { DocumentIntelligenceClient } = require("@azure-rest/ai-document-intelligence");
const  { AzureKeyCredential } = require("@azure/core-auth");

//use your `key` and `endpoint` environment variables
const key = process.env['DI_KEY'];
const endpoint = process.env['DI_ENDPOINT'];

// sample url
const invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/raw/master/curl/form-recognizer/rest-api/invoice.pdf";

async function main() {

  const client = DocumentIntelligence(endpoint, new AzureKeyCredential(key));

  const poller = await client.beginAnalyzeDocument("prebuilt-invoice", invoiceUrl);

  const {
      documents: [result]
  } = await poller.pollUntilDone();

  if (result) {
      const invoice = result.fields;

      console.log("Vendor Name:", invoice.VendorName?.content);
      console.log("Customer Name:", invoice.CustomerName?.content);
      console.log("Invoice Date:", invoice.InvoiceDate?.content);
      console.log("Due Date:", invoice.DueDate?.content);

      console.log("Items:");
      for (const {
              properties: item
          } of invoice.Items?.values ?? []) {
          console.log("-", item.ProductCode?.content ?? "<no product code>");
          console.log("  Description:", item.Description?.content);
          console.log("  Quantity:", item.Quantity?.content);
          console.log("  Date:", item.Date?.content);
          console.log("  Unit:", item.Unit?.content);
          console.log("  Unit Price:", item.UnitPrice?.content);
          console.log("  Tax:", item.Tax?.content);
          console.log("  Amount:", item.Amount?.content);
      }

      console.log("Subtotal:", invoice.SubTotal?.content);
      console.log("Previous Unpaid Balance:", invoice.PreviousUnpaidBalance?.content);
      console.log("Tax:", invoice.TotalTax?.content);
      console.log("Amount Due:", invoice.AmountDue?.content);
  } else {
      throw new Error("Expected at least one receipt in the result.");
  }
}

main().catch((error) => {
  console.error("An error occurred:", error);
  process.exit(1);
});

請造訪 GitHub 上的 Azure 範例存放庫,並檢視發票模型輸出

使用收據模型

const { DocumentIntelligenceClient } = require("@azure-rest/ai-document-intelligence");
const  { AzureKeyCredential } = require("@azure/core-auth");

//use your `key` and `endpoint` environment variables
const key = process.env['DI_KEY'];
const endpoint = process.env['DI_ENDPOINT'];

// sample url
const receiptUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/receipt.png";

async function main() {

    const client = DocumentIntelligence(endpoint, new AzureKeyCredential(key));

    const poller = await client.beginAnalyzeDocument("prebuilt-receipt", receiptUrl);

    const {
        documents: [result]
    } = await poller.pollUntilDone();

    if (result) {
        const {
            MerchantName,
            Items,
            Total
        } = result.fields;

        console.log("=== Receipt Information ===");
        console.log("Type:", result.docType);
        console.log("Merchant:", MerchantName && MerchantName.content);

        console.log("Items:");
        for (const item of (Items && Items.values) || []) {
            const {
                Description,
                TotalPrice
            } = item.properties;

            console.log("- Description:", Description && Description.content);
            console.log("  Total Price:", TotalPrice && TotalPrice.content);
        }

        console.log("Total:", Total && Total.content);
    } else {
        throw new Error("Expected at least one receipt in the result.");
    }

}

main().catch((err) => {
    console.error("The sample encountered an error:", err);
});

請造訪 GitHub 上的 Azure 範例存放庫,並檢視收據模型輸出

使用身分證明文件模型

const { DocumentIntelligenceClient } = require("@azure-rest/ai-document-intelligence");
const  { AzureKeyCredential } = require("@azure/core-auth");

//use your `key` and `endpoint` environment variables
const key = process.env['DI_KEY'];
const endpoint = process.env['DI_ENDPOINT'];

// sample document
const idDocumentURL = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/identity_documents.png"

async function main() {
 const client = DocumentIntelligence(endpoint, new AzureKeyCredential(key));

 const poller = await client.beginAnalyzeDocument("prebuilt-idDocument", idDocumentURL);

 const {
   documents: [result]
 } = await poller.pollUntilDone();

  if (result) {
// The identity document model has multiple document types, so we need to know which document type was actually
    extracted.
    if (result.docType === "idDocument.driverLicense") {
      const { FirstName, LastName, DocumentNumber, DateOfBirth, DateOfExpiration, Height, Weight, EyeColor, Endorsements, Restrictions, VehicleClassifications} = result.fields;

// For the sake of the example, we'll only show a few of the fields that are produced.
      console.log("Extracted a Driver License:");
      console.log("  Name:", FirstName && FirstName.content, LastName && LastName.content);
      console.log("  License No.:", DocumentNumber && DocumentNumber.content);
      console.log("  Date of Birth:", DateOfBirth && DateOfBirth.content);
      console.log("  Expiration:", DateOfExpiration && DateOfExpiration.content);
      console.log("  Height:", Height && Height.content);
      console.log("  Weight:", Weight && Weight.content);
      console.log("  Eye color:", EyeColor && EyeColor.content);
      console.log("  Restrictions:", Restrictions && Restrictions.content);
      console.log("  Endorsements:", Endorsements && Endorsements.content);
      console.log("  Class:", VehicleClassifications && VehicleClassifications.content);
    } else if (result.docType === "idDocument.passport") {
// The passport document type extracts and parses the Passport's machine-readable zone
      if (!result.fields.machineReadableZone) {
        throw new Error("No Machine Readable Zone extracted from passport.");
      }

      const {
        FirstName,
        LastName,
        DateOfBirth,
        Nationality,
        DocumentNumber,
        CountryRegion,
        DateOfExpiration,
      } = result.fields.machineReadableZone.properties;

      console.log("Extracted a Passport:");
      console.log("  Name:", FirstName && FirstName.content, LastName && LastName.content);
      console.log("  Date of Birth:", DateOfBirth && DateOfBirth.content);
      console.log("  Nationality:", Nationality && Nationality.content);
      console.log("  Passport No.:", DocumentNumber && DocumentNumber.content);
      console.log("  Issuer:", CountryRegion && CountryRegion.content);
      console.log("  Expiration Date:", DateOfExpiration && DateOfExpiration.content);
    } else {
// The only reason this would happen is if the client library's schema for the prebuilt identity document model is
      out of date, and a new document type has been introduced.
      console.error("Unknown document type in result:", result);
    }
  } else {
    throw new Error("Expected at least one receipt in the result.");
  }
}

main().catch((error) => {
  console.error("An error occurred:", error);
  process.exit(1);
});

請造訪 GitHub 上的 Azure 範例存放庫,並檢視 id-document 模型輸出

用戶端程式庫 (英文) | SDK 參考 (英文) | REST API 參考 (部分機器翻譯) | 套件 (npm) (英文) | 範例 (英文) |支援的 REST API 版本 (部分機器翻譯)

用戶端程式庫 (英文) | SDK 參考 (英文) | REST API 參考 (部分機器翻譯) | 套件 (npm) (英文) | 範例 (英文) |支援的 REST API 版本 (部分機器翻譯)

必要條件

  • Azure 訂用帳戶 - 建立免費帳戶

  • 最新的 Visual Studio Code 版本或您慣用的 IDE。 如需詳細資訊,請參閱 Visual Studio Code 中的 Node.js

  • 最新LTS版的 Node.js (英文)。

  • Azure AI 服務或文件智慧服務資源。 建立 single-servicemulti-service。 您可以使用免費定價層 (F0) 來試用服務,之後可升級至付費層以用於實際執行環境。

    提示

    如果您打算使用單一端點和金鑰存取多個 Azure AI 服務,請建立 Azure AI 服務資源。 若為僅限文件智慧服務存取,請建立文件智慧服務資源。 如果您想要使用 Microsoft Entra 驗證,則需要使用單一服務資源。

  • 從您所建立資源的金鑰和端點,將應用程式連線至 Azure 文件智慧服務。

    1. 部署資源之後,請選取 [移至資源]
    2. 在左側導覽功能表中,選取 [金鑰和端點]。
    3. 複製其中一個金鑰和 [端點],以供稍後在本文中使用。

    Azure 入口網站中金鑰與端點位置的螢幕擷取畫面。

  • URL 的文件檔案。 在本專案中,您可以使用下表中針對每個功能所提供的範例表單:

    功能 modelID document-url
    Read 模型 prebuilt-read 範例手冊
    版面配置模型 prebuilt-layout 範例預約確認
    W-2 表單模型 prebuilt-tax.us.w2 範例 W-2 表單
    發票模型 prebuilt-invoice 發票範例
    收據模型 prebuilt-receipt 範例收據
    識別碼文件模型 prebuilt-idDocument 範例身分證明文件
    名片模型 prebuilt-businessCard 範例名片

設定環境變數

若要與此文件智慧服務互動,您必須建立 DocumentAnalysisClient 類別的執行個體。 若要這樣做,請使用 keyendpoint 以從 Azure 入口網站將用戶端具現化。 在此專案中,使用環境變數來儲存和存取認證。

重要

如果您使用 API 金鑰,請將其安全地儲存在別處,例如 Azure Key Vault。 請勿在程式碼中直接包含 API 金鑰,且切勿公開張貼金鑰。

如需 AI 服務安全性的詳細資訊,請參閱驗證對 Azure AI 服務的要求

若要設定文件智慧服務資源金鑰的環境變數,請開啟主控台視窗,並遵循作業系統和開發環境的指示進行。 將 <yourKey><yourEndpoint> 取代為 Azure 入口網站中資源的值。

Windows 中的環境變數不區分大小寫。 這些變數通常會以大寫方式宣告,並加上底線聯結的字組。 在命令提示字元中,執行下列命令:

  1. 設定金鑰變數:

    setx DI_KEY <yourKey>
    
  2. 設定端點變數

    setx DI_ENDPOINT <yourEndpoint>
    
  3. 設定環境變數之後,請關閉 [命令提示字元] 視窗。 值會維持不變,直到您再次變更這些值為止。

  4. 重新啟動任何讀取環境變數的執行中程式。 例如,如果您使用 Visual Studio 或 Visual Studio Code 作為編輯器,則請在執行範例程式碼之前重新啟動。

以下是一些更實用的命令,可與環境變數搭配使用:

Command 動作 範例
setx VARIABLE_NAME= 將值設定為空字串,以刪除環境變數。 setx DI_KEY=
setx VARIABLE_NAME=value 設定或變更環境變數的值。 setx DI_KEY=<yourKey>
set VARIABLE_NAME 顯示特定環境變數的值。 set DI_KEY
set 顯示所有環境變數。 set

設定程式設計環境

建立 Node.js Express 應用程式。

  1. 在主控台視窗中,為您的應用程式建立名為 form-recognizer-app 的新目錄,並瀏覽至該目錄。

    mkdir form-recognizer-app
    cd form-recognizer-app
    
  2. 執行 npm init 命令來初始化應用程式,並建構您的專案。

    npm init
    
  3. 使用終端機中顯示的提示來指定專案的屬性。

    • 名稱、版本號碼和進入點是最重要的屬性。
    • 建議為進入點名稱保留 index.js。 描述、測試命令、GitHub 存放庫、關鍵字、作者和授權資訊皆為選擇性屬性。 在此專案中可以跳過。
    • 選取 Enter 以接受括號中的建議。

    完成提示後,將會在 form-recognizer-app 目錄中建立 package.json 檔案。

  4. 安裝 ai-form-recognizer 用戶端程式庫和 azure/identity npm 套件:

    npm i @azure/ai-form-recognizer @azure/identity
    

您應用程式的 package.json 檔案會隨著相依項目更新。

  1. 在應用程式目錄中建立名為 index.js 的檔案。

    提示

    您可以使用 PowerShell 建立新檔案。 按住 Shift 鍵並在資料夾上以滑鼠右鍵按一下,以開啟專案目錄中的 PowerShell 視窗,然後輸入下列命令:New-Item index.js

建置您的 應用程式

若要與此文件智慧服務互動,您必須建立 DocumentAnalysisClient 類別的執行個體。 若要這樣做,請使用您的金鑰從 Azure 入口網站建立 AzureKeyCredential,並使用 AzureKeyCredential 和文件智慧服務端點來建立 DocumentAnalysisClient 執行個體。

在 Visual Studio Code 或您偏好的 IDE 中開啟 index.js 檔案,然後選取下列其中一個程式碼範例,並複製/貼至您的應用程式:

  • prebuilt-read 模型是所有文件智慧服務模型的核心,而且可以偵測行、字組、位置和語言。 版面配置、一般文件、預建和自訂模型全都使用 read 模型做為從文件擷取文字的基礎。
  • prebuilt-layout 模型會從文件和映像中擷取文字和文字位置、資料表、選取標記和結構資訊。
  • prebuilt-tax.us.w2 模型會擷取美國內部營收服務 (IRS) 稅務表單上所報告的資訊。
  • prebuilt-invoice 模型會擷取美國國稅局 (IRS) 稅務表單上所報告的資訊。
  • prebuilt-receipt 模型會擷取印刷和手寫銷售收據的重要資訊。
  • prebuilt-idDocument 模型會擷取美國駕照、國際護照個人資料頁、美國州別識別碼、社會安全卡和永久居民卡的重要資訊。

使用讀取模型

const { AzureKeyCredential, DocumentAnalysisClient } = require("@azure/ai-form-recognizer");

//use your `key` and `endpoint` environment variables
const key = process.env['FR_KEY'];
const endpoint = process.env['FR_ENDPOINT'];

// sample document
const documentUrlRead = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/read.png"

// helper function
function* getTextOfSpans(content, spans) {
    for (const span of spans) {
        yield content.slice(span.offset, span.offset + span.length);
    }
}

async function main() {
    // create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
    const client = new DocumentAnalysisClient(endpoint, new AzureKeyCredential(key));
    const poller = await client.beginAnalyzeDocument("prebuilt-read", documentUrlRead);

    const {
        content,
        pages,
        languages,
        styles
    } = await poller.pollUntilDone();

    if (pages.length <= 0) {
        console.log("No pages were extracted from the document.");
    } else {
        console.log("Pages:");
        for (const page of pages) {
            console.log("- Page", page.pageNumber, `(unit: ${page.unit})`);
            console.log(`  ${page.width}x${page.height}, angle: ${page.angle}`);
            console.log(`  ${page.lines.length} lines, ${page.words.length} words`);

            if (page.lines.length > 0) {
                console.log("  Lines:");

                for (const line of page.lines) {
                    console.log(`  - "${line.content}"`);

                    // The words of the line can also be iterated independently. The words are computed based on their
                    // corresponding spans.
                    for (const word of line.words()) {
                        console.log(`    - "${word.content}"`);
                    }
                }
            }
        }
    }

    if (languages.length <= 0) {
        console.log("No language spans were extracted from the document.");
    } else {
        console.log("Languages:");
        for (const languageEntry of languages) {
            console.log(
                `- Found language: ${languageEntry.languageCode} (confidence: ${languageEntry.confidence})`
            );
            for (const text of getTextOfSpans(content, languageEntry.spans)) {
                const escapedText = text.replace(/\r?\n/g, "\\n").replace(/"/g, '\\"');
                console.log(`  - "${escapedText}"`);
            }
        }
    }

    if (styles.length <= 0) {
        console.log("No text styles were extracted from the document.");
    } else {
        console.log("Styles:");
        for (const style of styles) {
            console.log(
                `- Handwritten: ${style.isHandwritten ? "yes" : "no"} (confidence=${style.confidence})`
            );

            for (const word of getTextOfSpans(content, style.spans)) {
                console.log(`  - "${word}"`);
            }
        }
    }
}

main().catch((error) => {
    console.error("An error occurred:", error);
    process.exit(1);
});

請造訪 GitHub 上的 Azure 範例存放庫,並檢視read模型輸出

使用版面配置模型

const { AzureKeyCredential, DocumentAnalysisClient } = require("@azure/ai-form-recognizer");

//use your `key` and `endpoint` environment variables
const key = process.env['FR_KEY'];
const endpoint = process.env['FR_ENDPOINT'];

// sample document
const layoutUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/layout.png"

async function main() {
    const client = new DocumentAnalysisClient(endpoint, new AzureKeyCredential(key));

    const poller = await client.beginAnalyzeDocumentFromUrl(
      "prebuilt-layout", layoutUrl);

    // Layout extraction produces basic elements such as pages, words, lines, etc. as well as information about the
    // appearance (styles) of textual elements.
    const { pages, tables } = await poller.pollUntilDone();

    if (!pages || pages.length <= 0) {
      console.log("No pages were extracted from the document.");
    } else {
      console.log("Pages:");
      for (const page of pages) {
        console.log("- Page", page.pageNumber, `(unit: ${page.unit})`);
        console.log(`  ${page.width}x${page.height}, angle: ${page.angle}`);
        console.log(
          `  ${page.lines && page.lines.length} lines, ${page.words && page.words.length} words`
        );

        if (page.lines && page.lines.length > 0) {
          console.log("  Lines:");

          for (const line of page.lines) {
            console.log(`  - "${line.content}"`);

            // The words of the line can also be iterated independently. The words are computed based on their
            // corresponding spans.
            for (const word of line.words()) {
              console.log(`    - "${word.content}"`);
            }
          }
        }
      }
    }

    if (!tables || tables.length <= 0) {
      console.log("No tables were extracted from the document.");
    } else {
      console.log("Tables:");
      for (const table of tables) {
        console.log(
          `- Extracted table: ${table.columnCount} columns, ${table.rowCount} rows (${table.cells.length} cells)`
        );
      }
    }
  }

  main().catch((error) => {
    console.error("An error occurred:", error);
    process.exit(1);
  });

請造訪 GitHub 上的 Azure 範例存放庫,並檢視版面配置模型輸出

請使用一般文件模型

const { AzureKeyCredential, DocumentAnalysisClient } = require("@azure/ai-form-recognizer");

//use your `key` and `endpoint` environment variables
const key = process.env['FR_KEY'];
const endpoint = process.env['FR_ENDPOINT'];

// sample document
const documentUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/sample-layout.pdf"

async function main() {
    const client = new DocumentAnalysisClient(endpoint, new AzureKeyCredential(key));

    const poller = await client.beginAnalyzeDocumentFromUrl("prebuilt-document", documentUrl);

    const {
        keyValuePairs
    } = await poller.pollUntilDone();

    if (!keyValuePairs || keyValuePairs.length <= 0) {
        console.log("No key-value pairs were extracted from the document.");
    } else {
        console.log("Key-Value Pairs:");
        for (const {
                key,
                value,
                confidence
            } of keyValuePairs) {
            console.log("- Key  :", `"${key.content}"`);
            console.log("  Value:", `"${(value && value.content) || "<undefined>"}" (${confidence})`);
        }
    }

}

main().catch((error) => {
    console.error("An error occurred:", error);
    process.exit(1);
});

請造訪 GitHub 上的 Azure 範例存放庫,並檢視一般文件模型輸出

使用 W-2 稅務模型

const { AzureKeyCredential, DocumentAnalysisClient } = require("@azure/ai-form-recognizer");

//use your `key` and `endpoint` environment variables
const key = process.env['FR_KEY'];
const endpoint = process.env['FR_ENDPOINT'];

const w2DocumentURL = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/w2.png"

async function main() {
 const client = new DocumentAnalysisClient(endpoint, new AzureKeyCredential(key));

 const poller = await client.beginAnalyzeDocument("prebuilt-tax.us.w2", w2DocumentURL);

 const {
   documents: [result]
 } = await poller.pollUntilDone();

  if (result) {
    const { Employee, Employer, ControlNumber, TaxYear, AdditionalInfo } = result.fields;

    if (Employee) {
      const { Name, Address, SocialSecurityNumber } = Employee.properties;
      console.log("Employee:");
      console.log("  Name:", Name && Name.content);
      console.log("  SSN/TIN:", SocialSecurityNumber && SocialSecurityNumber.content);
      if (Address && Address.value) {
        const { streetAddress, postalCode } = Address.value;
        console.log("  Address:");
        console.log("    Street Address:", streetAddress);
        console.log("    Postal Code:", postalCode);
      }
    } else {
      console.log("No employee information extracted.");
    }

    if (Employer) {
      const { Name, Address, IdNumber } = Employer.properties;
      console.log("Employer:");
      console.log("  Name:", Name && Name.content);
      console.log("  ID (EIN):", IdNumber && IdNumber.content);

      if (Address && Address.value) {
        const { streetAddress, postalCode } = Address.value;
        console.log("  Address:");
        console.log("    Street Address:", streetAddress);
        console.log("    Postal Code:", postalCode);
      }
    } else {
      console.log("No employer information extracted.");
    }

    console.log("Control Number:", ControlNumber && ControlNumber.content);
    console.log("Tax Year:", TaxYear && TaxYear.content);

    if (AdditionalInfo) {
      console.log("Additional Info:");

      for (const info of AdditionalInfo.values) {
        const { LetterCode, Amount } = info.properties;
        console.log(`- ${LetterCode && LetterCode.content}: ${Amount && Amount.content}`);
      }
    }
  } else {
    throw new Error("Expected at least one document in the result.");
  }
}

main().catch((error) => {
  console.error(error);
  process.exit(1);
});

請造訪 GitHub 上的 Azure 範例存放庫,以檢視 W-2 稅務模型輸出

使用發票模型

const { AzureKeyCredential, DocumentAnalysisClient } = require("@azure/ai-form-recognizer");

//use your `key` and `endpoint` environment variables
const key = process.env['FR_KEY'];
const endpoint = process.env['FR_ENDPOINT'];

// sample url
const invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/raw/master/curl/form-recognizer/rest-api/invoice.pdf";

async function main() {

  const client = new DocumentAnalysisClient(endpoint, new AzureKeyCredential(key));

  const poller = await client.beginAnalyzeDocument("prebuilt-invoice", invoiceUrl);

  const {
      documents: [result]
  } = await poller.pollUntilDone();

  if (result) {
      const invoice = result.fields;

      console.log("Vendor Name:", invoice.VendorName?.content);
      console.log("Customer Name:", invoice.CustomerName?.content);
      console.log("Invoice Date:", invoice.InvoiceDate?.content);
      console.log("Due Date:", invoice.DueDate?.content);

      console.log("Items:");
      for (const {
              properties: item
          } of invoice.Items?.values ?? []) {
          console.log("-", item.ProductCode?.content ?? "<no product code>");
          console.log("  Description:", item.Description?.content);
          console.log("  Quantity:", item.Quantity?.content);
          console.log("  Date:", item.Date?.content);
          console.log("  Unit:", item.Unit?.content);
          console.log("  Unit Price:", item.UnitPrice?.content);
          console.log("  Tax:", item.Tax?.content);
          console.log("  Amount:", item.Amount?.content);
      }

      console.log("Subtotal:", invoice.SubTotal?.content);
      console.log("Previous Unpaid Balance:", invoice.PreviousUnpaidBalance?.content);
      console.log("Tax:", invoice.TotalTax?.content);
      console.log("Amount Due:", invoice.AmountDue?.content);
  } else {
      throw new Error("Expected at least one receipt in the result.");
  }
}

main().catch((error) => {
  console.error("An error occurred:", error);
  process.exit(1);
});

請造訪 GitHub 上的 Azure 範例存放庫,並檢視發票模型輸出

使用收據模型

const { AzureKeyCredential, DocumentAnalysisClient } = require("@azure/ai-form-recognizer");

//use your `key` and `endpoint` environment variables
const key = process.env['FR_KEY'];
const endpoint = process.env['FR_ENDPOINT'];

// sample url
const receiptUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/receipt.png";

async function main() {

    const client = new DocumentAnalysisClient(endpoint, new AzureKeyCredential(key));

    const poller = await client.beginAnalyzeDocument("prebuilt-receipt", receiptUrl);

    const {
        documents: [result]
    } = await poller.pollUntilDone();

    if (result) {
        const {
            MerchantName,
            Items,
            Total
        } = result.fields;

        console.log("=== Receipt Information ===");
        console.log("Type:", result.docType);
        console.log("Merchant:", MerchantName && MerchantName.content);

        console.log("Items:");
        for (const item of (Items && Items.values) || []) {
            const {
                Description,
                TotalPrice
            } = item.properties;

            console.log("- Description:", Description && Description.content);
            console.log("  Total Price:", TotalPrice && TotalPrice.content);
        }

        console.log("Total:", Total && Total.content);
    } else {
        throw new Error("Expected at least one receipt in the result.");
    }

}

main().catch((err) => {
    console.error("The sample encountered an error:", err);
});

請造訪 GitHub 上的 Azure 範例存放庫,並檢視收據模型輸出

使用身分證明文件模型

const { AzureKeyCredential, DocumentAnalysisClient } = require("@azure/ai-form-recognizer");

//use your `key` and `endpoint` environment variables
const key = process.env['FR_KEY'];
const endpoint = process.env['FR_ENDPOINT'];

// sample document
const idDocumentURL = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/identity_documents.png"

async function main() {
 const client = new DocumentAnalysisClient(endpoint, new AzureKeyCredential(key));

 const poller = await client.beginAnalyzeDocument("prebuilt-idDocument", idDocumentURL);

 const {
   documents: [result]
 } = await poller.pollUntilDone();

  if (result) {
// The identity document model has multiple document types, so we need to know which document type was actually
    extracted.
    if (result.docType === "idDocument.driverLicense") {
      const { FirstName, LastName, DocumentNumber, DateOfBirth, DateOfExpiration, Height, Weight, EyeColor, Endorsements, Restrictions, VehicleClassifications} = result.fields;

// For the sake of the example, we'll only show a few of the fields that are produced.
      console.log("Extracted a Driver License:");
      console.log("  Name:", FirstName && FirstName.content, LastName && LastName.content);
      console.log("  License No.:", DocumentNumber && DocumentNumber.content);
      console.log("  Date of Birth:", DateOfBirth && DateOfBirth.content);
      console.log("  Expiration:", DateOfExpiration && DateOfExpiration.content);
      console.log("  Height:", Height && Height.content);
      console.log("  Weight:", Weight && Weight.content);
      console.log("  Eye color:", EyeColor && EyeColor.content);
      console.log("  Restrictions:", Restrictions && Restrictions.content);
      console.log("  Endorsements:", Endorsements && Endorsements.content);
      console.log("  Class:", VehicleClassifications && VehicleClassifications.content);
    } else if (result.docType === "idDocument.passport") {
// The passport document type extracts and parses the Passport's machine-readable zone
      if (!result.fields.machineReadableZone) {
        throw new Error("No Machine Readable Zone extracted from passport.");
      }

      const {
        FirstName,
        LastName,
        DateOfBirth,
        Nationality,
        DocumentNumber,
        CountryRegion,
        DateOfExpiration,
      } = result.fields.machineReadableZone.properties;

      console.log("Extracted a Passport:");
      console.log("  Name:", FirstName && FirstName.content, LastName && LastName.content);
      console.log("  Date of Birth:", DateOfBirth && DateOfBirth.content);
      console.log("  Nationality:", Nationality && natiNationalityonality.content);
      console.log("  Passport No.:", DocumentNumber && DocumentNumber.content);
      console.log("  Issuer:", CountryRegion && CountryRegion.content);
      console.log("  Expiration Date:", DateOfExpiration && DateOfExpiration.content);
    } else {
// The only reason this would happen is if the client library's schema for the prebuilt identity document model is
      out of date, and a new document type has been introduced.
      console.error("Unknown document type in result:", result);
    }
  } else {
    throw new Error("Expected at least one receipt in the result.");
  }
}

main().catch((error) => {
  console.error("An error occurred:", error);
  process.exit(1);
});

請造訪 GitHub 上的 Azure 範例存放庫,並檢視 id-document 模型輸出

使用名片模型

const { AzureKeyCredential, DocumentAnalysisClient } = require("@azure/ai-form-recognizer");

//use your `key` and `endpoint` environment variables
const key = process.env['FR_KEY'];
const endpoint = process.env['FR_ENDPOINT'];

// sample document
const businessCardURL = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/de5e0d8982ab754823c54de47a47e8e499351523/curl/form-recognizer/rest-api/business_card.jpg"

async function main() {
    const client = new DocumentAnalysisClient(endpoint, new AzureKeyCredential(key));

    const poller = await client.beginAnalyzeDocument("prebuilt-businessCard", businessCardURL);

    const {
        documents: [result]
    } = await poller.pollUntilDone();

    if (result) {
        const businessCard = result.fields;
        console.log("=== Business Card Information ===");

        // There are more fields than just these few, and the model allows for multiple contact & company names as well as
        // phone numbers, though we'll only show the first extracted values here.
        const name = businessCard.ContactNames && businessCard.ContactNames.values[0];
        if (name) {
            const {
                FirstName,
                LastName
            } = name.properties;
            console.log("Name:", FirstName && FirstName.content, LastName && LastName.content);
        }

        const company = businessCard.CompanyNames && businessCard.CompanyNames.values[0];
        if (company) {
            console.log("Company:", company.content);
        }

        const address = businessCard.Addresses && businessCard.Addresses.values[0];
        if (address) {
            console.log("Address:", address.content);
        }
        const jobTitle = businessCard.JobTitles && businessCard.JobTitles.values[0];
        if (jobTitle) {
            console.log("Job title:", jobTitle.content);
        }
        const department = businessCard.Departments && businessCard.Departments.values[0];
        if (department) {
            console.log("Department:", department.content);
        }
        const email = businessCard.Emails && businessCard.Emails.values[0];
        if (email) {
            console.log("Email:", email.content);
        }
        const workPhone = businessCard.WorkPhones && businessCard.WorkPhones.values[0];
        if (workPhone) {
            console.log("Work phone:", workPhone.content);
        }
        const website = businessCard.Websites && businessCard.Websites.values[0];
        if (website) {
            console.log("Website:", website.content);
        }
    } else {
        throw new Error("Expected at least one business card in the result.");
    }
}

main().catch((error) => {
    console.error("An error occurred:", error);
    process.exit(1);
});

請造訪 GitHub 上的 Azure 範例存放庫,並檢視名片模型輸出

用戶端程式庫 (英文) |SDK 參考 (英文) | REST API 參考 (部分機器翻譯) | 套件 (PyPi) (英文) | 範例 (英文) | 支援的 REST API 版本 (部分機器翻譯)

必要條件

  • Azure 訂用帳戶 - 建立免費帳戶

  • Python 3.7 或更新版本 (英文)。 您安裝的 Python 應包含 pip。 您可以在命令列上執行 pip --version 來檢查是否已安裝 pip。 安裝最新版本的 Python 以取得 pip。

  • 最新的 Visual Studio Code 版本或您慣用的 IDE。 請參閱 Visual Studio Code 中的 Python 使用者入門

  • Azure AI 服務或文件智慧服務資源。 建立 single-servicemulti-service。 您可以使用免費定價層 (F0) 來試用服務,之後可升級至付費層以用於實際執行環境。

  • 從您所建立資源的金鑰和端點,將應用程式連線至 Azure 文件智慧服務。

    1. 部署資源之後,請選取 [移至資源]
    2. 在左側導覽功能表中,選取 [金鑰和端點]。
    3. 複製其中一個金鑰和 [端點],以供稍後在本文中使用。

    Azure 入口網站中金鑰與端點位置的螢幕擷取畫面。

  • URL 的文件檔案。 在本專案中,您可以使用下表中針對每個功能所提供的範例表單:

    功能 modelID document-url
    Read 模型 prebuilt-read 範例手冊
    版面配置模型 prebuilt-layout 範例預約確認
    W-2 表單模型 prebuilt-tax.us.w2 範例 W-2 表單
    發票模型 prebuilt-invoice 發票範例
    收據模型 prebuilt-receipt 範例收據
    識別碼文件模型 prebuilt-idDocument 範例身分證明文件

設定環境變數

若要與此文件智慧服務互動,您必須建立 DocumentAnalysisClient 類別的執行個體。 若要這樣做,請使用 keyendpoint 以從 Azure 入口網站將用戶端具現化。 在此專案中,使用環境變數來儲存和存取認證。

重要

如果您使用 API 金鑰,請將其安全地儲存在別處,例如 Azure Key Vault。 請勿在程式碼中直接包含 API 金鑰,且切勿公開張貼金鑰。

如需 AI 服務安全性的詳細資訊,請參閱驗證對 Azure AI 服務的要求

若要設定文件智慧服務資源金鑰的環境變數,請開啟主控台視窗,並遵循作業系統和開發環境的指示進行。 將 <yourKey><yourEndpoint> 取代為 Azure 入口網站中資源的值。

Windows 中的環境變數不區分大小寫。 這些變數通常會以大寫方式宣告,並加上底線聯結的字組。 在命令提示字元中,執行下列命令:

  1. 設定金鑰變數:

    setx DI_KEY <yourKey>
    
  2. 設定端點變數

    setx DI_ENDPOINT <yourEndpoint>
    
  3. 設定環境變數之後,請關閉 [命令提示字元] 視窗。 值會維持不變,直到您再次變更這些值為止。

  4. 重新啟動任何讀取環境變數的執行中程式。 例如,如果您使用 Visual Studio 或 Visual Studio Code 作為編輯器,則請在執行範例程式碼之前重新啟動。

以下是一些更實用的命令,可與環境變數搭配使用:

Command 動作 範例
setx VARIABLE_NAME= 將值設定為空字串,以刪除環境變數。 setx DI_KEY=
setx VARIABLE_NAME=value 設定或變更環境變數的值。 setx DI_KEY=<yourKey>
set VARIABLE_NAME 顯示特定環境變數的值。 set DI_KEY
set 顯示所有環境變數。 set

設定程式設計環境

在本機環境中開啟終端機主控台視窗,並使用 pip 安裝適用於 Python 的 Azure AI 文件智慧服務用戶端程式庫:

pip install azure-ai-documentintelligence==1.0.0b4

建立 Python 應用程式

若要與此文件智慧服務互動,您必須建立 DocumentIntelligenceClient 類別的執行個體。 若要這樣做,請使用您的金鑰從 Azure 入口網站建立 AzureKeyCredential,並使用 AzureKeyCredential 和文件智慧服務端點來建立 DocumentIntelligenceClient 執行個體。

  1. 在編輯器或 IDE 中建立一個名為 form_recognizer_quickstart.py 的新 Python 檔案。

  2. 開啟 form_recognizer_quickstart.py 檔案,然後選取下列其中一個程式碼範例,並複製/貼上您的應用程式:

    • prebuilt-read 模型是所有文件智慧服務模型的核心,而且可以偵測行、字組、位置和語言。 版面配置、一般文件、預建和自訂模型全都使用 read 模型做為從文件擷取文字的基礎。
    • prebuilt-layout 模型會從文件和映像中擷取文字和文字位置、資料表、選取標記和結構資訊。
    • prebuilt-tax.us.w2 模型會擷取美國內部營收服務 (IRS) 稅務表單上所報告的資訊。
    • prebuilt-invoice 模型會以各種格式從銷售發票擷取重要欄位和明細行項目。
    • prebuilt-receipt 模型會擷取印刷和手寫銷售收據的重要資訊。
    • prebuilt-idDocument 模型會擷取美國駕照、國際護照個人資料頁、美國州別識別碼、社會安全卡和永久居民卡的重要資訊。
  3. 從命令提示字元執行 Python 程式碼。

    python form_recognizer_quickstart.py
    

使用讀取模型

import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import AnalyzeResult

# use your `key` and `endpoint` environment variables
key = os.environ.get('DI_KEY')
endpoint = os.environ.get('DI_ENDPOINT')

# helper functions
def get_words(page, line):
    result = []
    for word in page.words:
        if _in_span(word, line.spans):
            result.append(word)
    return result


def _in_span(word, spans):
    for span in spans:
        if word.span.offset >= span.offset and (word.span.offset + word.span.length) <= (span.offset + span.length):
            return True
    return False


def analyze_read():
    # sample document
    formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/read.png"

    client = DocumentIntelligenceClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )

    poller = client.begin_analyze_document(
        "prebuilt-read", AnalyzeDocumentRequest(url_source=formUrl
    ))
    result: AnalyzeResult = poller.result()

    print("----Languages detected in the document----")
    if result.languages is not None:
        for language in result.languages:
            print(f"Language code: '{language.locale}' with confidence {language.confidence}")

    print("----Styles detected in the document----")
    if result.styles:
        for style in result.styles:
            if style.is_handwritten:
                print("Found the following handwritten content: ")
                print(",".join([result.content[span.offset : span.offset + span.length] for span in style.spans]))
            if style.font_style:
                print(f"The document contains '{style.font_style}' font style, applied to the following text: ")
                print(",".join([result.content[span.offset : span.offset + span.length] for span in style.spans]))

    for page in result.pages:
        print(f"----Analyzing document from page #{page.page_number}----")
        print(f"Page has width: {page.width} and height: {page.height}, measured with unit: {page.unit}")

        if page.lines:
            for line_idx, line in enumerate(page.lines):
                words = get_words(page, line)
                print(
                    f"...Line # {line_idx} has {len(words)} words and text '{line.content}' within bounding polygon '{line.polygon}'"
                )

                for word in words:
                    print(f"......Word '{word.content}' has a confidence of {word.confidence}")

        if page.selection_marks:
            for selection_mark in page.selection_marks:
                print(
                    f"...Selection mark is '{selection_mark.state}' within bounding polygon "
                    f"'{selection_mark.polygon}' and has a confidence of {selection_mark.confidence}"
                )

    if result.paragraphs:
        print(f"----Detected #{len(result.paragraphs)} paragraphs in the document----")
        for paragraph in result.paragraphs:
            print(f"Found paragraph with role: '{paragraph.role}' within {paragraph.bounding_regions} bounding region")
            print(f"...with content: '{paragraph.content}'")

        result.paragraphs.sort(key=lambda p: (p.spans.sort(key=lambda s: s.offset), p.spans[0].offset))
        print("-----Print sorted paragraphs-----")
        for idx, paragraph in enumerate(result.paragraphs):
            print(
                f"...paragraph:{idx} with offset: {paragraph.spans[0].offset} and length: {paragraph.spans[0].length}"
            )

    print("----------------------------------------")


if __name__ == "__main__":
    analyze_read()

請造訪 GitHub 上的 Azure 範例存放庫,並檢視 read 模型輸出

使用版面配置模型

import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import AnalyzeResult


# use your `key` and `endpoint` environment variables
key = os.environ.get('DI_KEY')
endpoint = os.environ.get('DI_ENDPOINT')


def analyze_layout():
    # sample document
    formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/layout.png"

    client = DocumentIntelligenceClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )

    poller = client.begin_analyze_document(
        "prebuilt-layout", AnalyzeDocumentRequest(url_source=formUrl
    ))
    result: AnalyzeResult = poller.result()

    if result.styles and any([style.is_handwritten for style in result.styles]):
        print("Document contains handwritten content")
    else:
        print("Document does not contain handwritten content")

    for page in result.pages:
        print(f"----Analyzing layout from page #{page.page_number}----")
        print(f"Page has width: {page.width} and height: {page.height}, measured with unit: {page.unit}")

        if page.lines:
            for line_idx, line in enumerate(page.lines):
                words = get_words(page, line)
                print(
                    f"...Line # {line_idx} has word count {len(words)} and text '{line.content}' "
                    f"within bounding polygon '{line.polygon}'"
                )

                for word in words:
                    print(f"......Word '{word.content}' has a confidence of {word.confidence}")

        if page.selection_marks:
            for selection_mark in page.selection_marks:
                print(
                    f"Selection mark is '{selection_mark.state}' within bounding polygon "
                    f"'{selection_mark.polygon}' and has a confidence of {selection_mark.confidence}"
                )

    if result.tables:
        for table_idx, table in enumerate(result.tables):
            print(f"Table # {table_idx} has {table.row_count} rows and " f"{table.column_count} columns")
            if table.bounding_regions:
                for region in table.bounding_regions:
                    print(f"Table # {table_idx} location on page: {region.page_number} is {region.polygon}")
            for cell in table.cells:
                print(f"...Cell[{cell.row_index}][{cell.column_index}] has text '{cell.content}'")
                if cell.bounding_regions:
                    for region in cell.bounding_regions:
                        print(f"...content on page {region.page_number} is within bounding polygon '{region.polygon}'")

    print("----------------------------------------")



if __name__ == "__main__":
    analyze_layout()

請造訪 GitHub 上的 Azure 範例存放庫,並檢視版面配置模型輸出

使用 W-2 稅務模型

import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import AnalyzeResult

# use your `key` and `endpoint` environment variables
key = os.environ.get('DI_KEY')
endpoint = os.environ.get('DI_ENDPOINT')

# formatting function
def format_address_value(address_value):
    return f"\n......House/building number: {address_value.house_number}\n......Road: {address_value.road}\n......City: {address_value.city}\n......State: {address_value.state}\n......Postal code: {address_value.postal_code}"


def analyze_tax_us_w2():
    # sample document
    formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/w2.png"

    client = DocumentIntelligenceClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )

    poller = client.begin_analyze_document(
        "prebuilt-tax.us.w2",  AnalyzeDocumentRequest(url_source=formUrl
    ))

    w2s: AnalyzeResult =  poller.result()

        if w2s.documents:
        for idx, w2 in enumerate(w2s.documents):
            print(f"--------Analyzing US Tax W-2 Form #{idx + 1}--------")
            if w2.fields:
                form_variant = w2.fields.get("W2FormVariant")
                if form_variant:
                    print(
                        f"Form variant: {form_variant.get('valueString')} has confidence: " f"{form_variant.confidence}"
                    )
                tax_year = w2.fields.get("TaxYear")
                if tax_year:
                    print(f"Tax year: {tax_year.get('valueString')} has confidence: {tax_year.confidence}")
                w2_copy = w2.fields.get("W2Copy")
                if w2_copy:
                    print(f"W-2 Copy: {w2_copy.get('valueString')} has confidence: {w2_copy.confidence}")
                employee = w2.fields.get("Employee")
                if employee:
                    print("Employee data:")
                    employee_name = employee.get("valueObject").get("Name")
                    if employee_name:
                        f"confidence: {fed_income_tax_withheld.confidence}"
                    )
                social_security_wages = w2.fields.get("SocialSecurityWages")
                if social_security_wages:
                    print(
                        f"Social Security wages: {social_security_wages.get('valueNumber')} has confidence: "
                        f"{social_security_wages.confidence}"
                    )
                social_security_tax_withheld = w2.fields.get("SocialSecurityTaxWithheld")
                if social_security_tax_withheld:
                    print(
                        f"Social Security tax withheld: {social_security_tax_withheld.get('valueNumber')} "
                        f"has confidence: {social_security_tax_withheld.confidence}"
                    )
                medicare_wages_tips = w2.fields.get("MedicareWagesAndTips")
                if medicare_wages_tips:
                    print(
                        f"Medicare wages and tips: {medicare_wages_tips.get('valueNumber')} has confidence: "
                        f"{medicare_wages_tips.confidence}"
                    )
                medicare_tax_withheld = w2.fields.get("MedicareTaxWithheld")
                if medicare_tax_withheld:
                    print(
                        f"Medicare tax withheld: {medicare_tax_withheld.get('valueNumber')} has confidence: "
                        f"{medicare_tax_withheld.confidence}"
                    )
                social_security_tips = w2.fields.get("SocialSecurityTips")
                if social_security_tips:
                    print(
                        f"Social Security tips: {social_security_tips.get('valueNumber')} has confidence: "
                        f"{social_security_tips.confidence}"
                    )
                allocated_tips = w2.fields.get("AllocatedTips")
                if allocated_tips:
                    print(
                        f"Allocated tips: {allocated_tips.get('valueNumber')} has confidence: {allocated_tips.confidence}"
                    )
                verification_code = w2.fields.get("VerificationCode")
                if verification_code:
                    print(
                        f"Verification code: {verification_code.get('valueNumber')} has confidence: {verification_code.confidence}"
                    )
                dependent_care_benefits = w2.fields.get("DependentCareBenefits")
                if dependent_care_benefits:
                    print(
                        f"Dependent care benefits: {dependent_care_benefits.get('valueNumber')} has confidence: {dependent_care_benefits.confidence}"
                    )
                non_qualified_plans = w2.fields.get("NonQualifiedPlans")
                if non_qualified_plans:
                    print(
                        f"Non-qualified plans: {non_qualified_plans.get('valueNumber')} has confidence: {non_qualified_plans.confidence}"
                    )
                additional_info = w2.fields.get("AdditionalInfo")
                if additional_info:
                    print("Additional information:")
                    for item in additional_info.get("valueArray"):
                        letter_code = item.get("valueObject").get("LetterCode")
                        if letter_code:
                            print(
                                f"...Letter code: {letter_code.get('valueString')} has confidence: {letter_code.confidence}"
                            )
                        amount = item.get("valueObject").get("Amount")
                        if amount:
                            print(f"...Amount: {amount.get('valueNumber')} has confidence: {amount.confidence}")
                is_statutory_employee = w2.fields.get("IsStatutoryEmployee")
                if is_statutory_employee:
                    print(
                        f"Is statutory employee: {is_statutory_employee.get('valueString')} has confidence: {is_statutory_employee.confidence}"
                    )
                is_retirement_plan = w2.fields.get("IsRetirementPlan")
                if is_retirement_plan:
                    print(
                        f"Is retirement plan: {is_retirement_plan.get('valueString')} has confidence: {is_retirement_plan.confidence}"
                    )
                third_party_sick_pay = w2.fields.get("IsThirdPartySickPay")
                if third_party_sick_pay:
                    print(
                        f"Is third party sick pay: {third_party_sick_pay.get('valueString')} has confidence: {third_party_sick_pay.confidence}"
                    )
                other_info = w2.fields.get("Other")
                if other_info:
                    print(f"Other information: {other_info.get('valueString')} has confidence: {other_info.confidence}")
                state_tax_info = w2.fields.get("StateTaxInfos")
                if state_tax_info:
                    print("State Tax info:")
                    for tax in state_tax_info.get("valueArray"):
                        state = tax.get("valueObject").get("State")
                        if state:
                            print(f"...State: {state.get('valueString')} has confidence: {state.confidence}")
                        employer_state_id_number = tax.get("valueObject").get("EmployerStateIdNumber")
                        if employer_state_id_number:
                            print(
                                f"...Employer state ID number: {employer_state_id_number.get('valueString')} has "
                                f"confidence: {employer_state_id_number.confidence}"
                            )
                        state_wages_tips = tax.get("valueObject").get("StateWagesTipsEtc")
                        if state_wages_tips:
                            print(
                                f"...State wages, tips, etc: {state_wages_tips.get('valueNumber')} has confidence: "
                                f"{state_wages_tips.confidence}"
                            )
                        state_income_tax = tax.get("valueObject").get("StateIncomeTax")
                        if state_income_tax:
                            print(
                                f"...State income tax: {state_income_tax.get('valueNumber')} has confidence: "
                                f"{state_income_tax.confidence}"
                            )
                local_tax_info = w2.fields.get("LocalTaxInfos")
                if local_tax_info:
                    print("Local Tax info:")
                    for tax in local_tax_info.get("valueArray"):
                        local_wages_tips = tax.get("valueObject").get("LocalWagesTipsEtc")
                        if local_wages_tips:
                            print(
                                f"...Local wages, tips, etc: {local_wages_tips.get('valueNumber')} has confidence: "
                                f"{local_wages_tips.confidence}"
                            )
                        local_income_tax = tax.get("valueObject").get("LocalIncomeTax")
                        if local_income_tax:
                            print(
                                f"...Local income tax: {local_income_tax.get('valueNumber')} has confidence: "
                                f"{local_income_tax.confidence}"
                            )
                        locality_name = tax.get("valueObject").get("LocalityName")
                        if locality_name:
                            print(
                                f"...Locality name: {locality_name.get('valueString')} has confidence: "
                                f"{locality_name.confidence}"
                            )


                print("----------------------------------------")


if __name__ == "__main__":
    analyze_tax_us_w2()

請造訪 GitHub 上的 Azure 範例存放庫,以檢視 W-2 稅務模型輸出

使用發票模型

import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import AnalyzeResult

# use your `key` and `endpoint` environment variables
key = os.environ.get('DI_KEY')
endpoint = os.environ.get('DI_ENDPOINT')

def analyze_invoice():

    invoiceUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/sample-invoice.pdf"

    client = DocumentIntelligenceClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )

    poller = client.begin_analyze_document(
        "prebuilt-invoice", AnalyzeDocumentRequest(url_source=formUrl), locale="en-US")

    result: AnalyzeResult = poller.result()

    if invoices.documents:
        for idx, invoice in enumerate(invoices.documents):
            print(f"--------Analyzing invoice #{idx + 1}--------")
            if invoice.fields:
                vendor_name = invoice.fields.get("VendorName")
                if vendor_name:
                    print(f"Vendor Name: {vendor_name.get('content')} has confidence: {vendor_name.get('confidence')}")
                vendor_address = invoice.fields.get("VendorAddress")
                if vendor_address:
                    print(
                        f"Vendor Address: {vendor_address.get('content')} has confidence: {vendor_address.get('confidence')}"
                    )
                vendor_address_recipient = invoice.fields.get("VendorAddressRecipient")
                if vendor_address_recipient:
                    print(
                        f"Vendor Address Recipient: {vendor_address_recipient.get('content')} has confidence: {vendor_address_recipient.get('confidence')}"
                    )
                customer_name = invoice.fields.get("CustomerName")
                if customer_name:
                    print(
                        f"Customer Name: {customer_name.get('content')} has confidence: {customer_name.get('confidence')}"
                    )
                customer_id = invoice.fields.get("CustomerId")
                if invoice_id:
                    print(f"Invoice Id: {invoice_id.get('content')} has confidence: {invoice_id.get('confidence')}")
                invoice_date = invoice.fields.get("InvoiceDate")
                if invoice_date:
                    print(
                        f"Invoice Date: {invoice_date.get('content')} has confidence: {invoice_date.get('confidence')}"
                    )
                invoice_total = invoice.fields.get("InvoiceTotal")
                if invoice_total:
                    print(
                        f"Invoice Total: {invoice_total.get('content')} has confidence: {invoice_total.get('confidence')}"
                    )
                due_date = invoice.fields.get("DueDate")
                if due_date:
                    print(f"Due Date: {due_date.get('content')} has confidence: {due_date.get('confidence')}")
                purchase_order = invoice.fields.get("PurchaseOrder")
                if purchase_order:
                    print(
                        f"Purchase Order: {purchase_order.get('content')} has confidence: {purchase_order.get('confidence')}"
                    )
                billing_address = invoice.fields.get("BillingAddress")
                if billing_address:
                    print(
                        f"Billing Address: {billing_address.get('content')} has confidence: {billing_address.get('confidence')}"
                    )
                billing_address_recipient = invoice.fields.get("BillingAddressRecipient")
                if billing_address_recipient:
                    print(
                        f"Billing Address Recipient: {billing_address_recipient.get('content')} has confidence: {billing_address_recipient.get('confidence')}"
                    )
                shipping_address = invoice.fields.get("ShippingAddress")
                if shipping_address:
                    print(
                        f"Shipping Address: {shipping_address.get('content')} has confidence: {shipping_address.get('confidence')}"
                    )
                shipping_address_recipient = invoice.fields.get("ShippingAddressRecipient")
                if shipping_address_recipient:
                    print(
                        f"Shipping Address Recipient: {shipping_address_recipient.get('content')} has confidence: {shipping_address_recipient.get('confidence')}"
                    )
                print("Invoice items:")
                items = invoice.fields.get("Items")
                if items:
                    for idx, item in enumerate(items.get("valueArray")):
                        print(f"...Item #{idx + 1}")
                        item_description = item.get("valueObject").get("Description")
                        if item_description:
                            print(
                                f"......Description: {item_description.get('content')} has confidence: {item_description.get('confidence')}"
                            )
                        item_quantity = item.get("valueObject").get("Quantity")
                        if item_quantity:
                            print(
                                f"......Quantity: {item_quantity.get('content')} has confidence: {item_quantity.get('confidence')}"
                            )
                        unit = item.get("valueObject").get("Unit")
                        if unit:
                            print(f"......Unit: {unit.get('content')} has confidence: {unit.get('confidence')}")
                        unit_price = item.get("valueObject").get("UnitPrice")
                        if unit_price:
                            unit_price_code = (
                                unit_price.get("valueCurrency").get("currencyCode")
                                if unit_price.get("valueCurrency").get("currencyCode")
                                else ""
                            )
                            print(
                                f"......Unit Price: {unit_price.get('content')}{unit_price_code} has confidence: {unit_price.get('confidence')}"
                            )
                        product_code = item.get("valueObject").get("ProductCode")
                        if product_code:
                            print(
                                f"......Product Code: {product_code.get('content')} has confidence: {product_code.get('confidence')}"
                            )
                        item_date = item.get("valueObject").get("Date")
                        if item_date:
                            print(
                                f"......Date: {item_date.get('content')} has confidence: {item_date.get('confidence')}"
                            )
                        tax = item.get("valueObject").get("Tax")
                        if tax:
                            print(f"......Tax: {tax.get('content')} has confidence: {tax.get('confidence')}")
                        amount = item.get("valueObject").get("Amount")
                        if amount:
                            print(f"......Amount: {amount.get('content')} has confidence: {amount.get('confidence')}")
                subtotal = invoice.fields.get("SubTotal")
                if subtotal:
                    print(f"Subtotal: {subtotal.get('content')} has confidence: {subtotal.get('confidence')}")
                total_tax = invoice.fields.get("TotalTax")
                if total_tax:
                    print(f"Total Tax: {total_tax.get('content')} has confidence: {total_tax.get('confidence')}")
                previous_unpaid_balance = invoice.fields.get("PreviousUnpaidBalance")
                if previous_unpaid_balance:
                    print(
                        f"Previous Unpaid Balance: {previous_unpaid_balance.get('content')} has confidence: {previous_unpaid_balance.get('confidence')}"
                    )
                amount_due = invoice.fields.get("AmountDue")
                if amount_due:
                    print(f"Amount Due: {amount_due.get('content')} has confidence: {amount_due.get('confidence')}")
                service_start_date = invoice.fields.get("ServiceStartDate")
                if service_start_date:
                    print(
                        f"Service Start Date: {service_start_date.get('content')} has confidence: {service_start_date.get('confidence')}"
                    )
                service_end_date = invoice.fields.get("ServiceEndDate")
                if service_end_date:
                    print(
                        f"Service End Date: {service_end_date.get('content')} has confidence: {service_end_date.get('confidence')}"
                    )
                service_address = invoice.fields.get("ServiceAddress")
                if service_address:
                    print(
                        f"Service Address: {service_address.get('content')} has confidence: {service_address.get('confidence')}"
                    )
                service_address_recipient = invoice.fields.get("ServiceAddressRecipient")
                if service_address_recipient:
                    print(
                        f"Service Address Recipient: {service_address_recipient.get('content')} has confidence: {service_address_recipient.get('confidence')}"
                    )
                remittance_address = invoice.fields.get("RemittanceAddress")
                if remittance_address:
                    print(
                        f"Remittance Address: {remittance_address.get('content')} has confidence: {remittance_address.get('confidence')}"
                    )
                remittance_address_recipient = invoice.fields.get("RemittanceAddressRecipient")
                if remittance_address_recipient:
                    print(
                        f"Remittance Address Recipient: {remittance_address_recipient.get('content')} has confidence: {remittance_address_recipient.get('confidence')}"
                    )


        print("----------------------------------------")

if __name__ == "__main__":
    analyze_invoice()

請造訪 GitHub 上的 Azure 範例存放庫,並檢視發票模型輸出

使用收據模型

import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import AnalyzeResult

# use your `key` and `endpoint` environment variables
key = os.environ.get('DI_KEY')
endpoint = os.environ.get('DI_ENDPOINT')

def analyze_receipts():
    # sample document
    receiptUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/receipt.png"

   client = DocumentIntelligenceClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )
    poller = client.begin_analyze_document(
        "prebuilt-receipt", AnalyzeDocumentRequest(url_source=receiptUrl), locale="en-US"
    )
    receipts: AnalyzeResult = poller.result()

    if receipts.documents:
        for idx, receipt in enumerate(receipts.documents):
            print(f"--------Analysis of receipt #{idx + 1}--------")
            print(f"Receipt type: {receipt.doc_type if receipt.doc_type else 'N/A'}")
            if receipt.fields:
                merchant_name = receipt.fields.get("MerchantName")
                if merchant_name:
                    print(
                        f"Merchant Name: {merchant_name.get('valueString')} has confidence: "
                        f"{merchant_name.confidence}"
                    )
                transaction_date = receipt.fields.get("TransactionDate")
                if transaction_date:
                    print(
                        f"Transaction Date: {transaction_date.get('valueDate')} has confidence: "
                        f"{transaction_date.confidence}"
                    )
                items = receipt.fields.get("Items")
                if items:
                    print("Receipt items:")
                    for idx, item in enumerate(items.get("valueArray")):
                        print(f"...Item #{idx + 1}")
                        item_description = item.get("valueObject").get("Description")
                        if item_description:
                            print(
                                f"......Item Description: {item_description.get('valueString')} has confidence: "
                                f"{item_description.confidence}"
                            )
                        item_quantity = item.get("valueObject").get("Quantity")
                        if item_quantity:
                            print(
                                f"......Item Quantity: {item_quantity.get('valueString')} has confidence: "
                                f"{item_quantity.confidence}"
                            )
                        item_total_price = item.get("valueObject").get("TotalPrice")
                        if item_total_price:
                            print(
                                f"......Total Item Price: {format_price(item_total_price.get('valueCurrency'))} has confidence: "
                                f"{item_total_price.confidence}"
                            )
                subtotal = receipt.fields.get("Subtotal")
                if subtotal:
                    print(
                        f"Subtotal: {format_price(subtotal.get('valueCurrency'))} has confidence: {subtotal.confidence}"
                    )
                tax = receipt.fields.get("TotalTax")
                if tax:
                    print(f"Total tax: {format_price(tax.get('valueCurrency'))} has confidence: {tax.confidence}")
                tip = receipt.fields.get("Tip")
                if tip:
                    print(f"Tip: {format_price(tip.get('valueCurrency'))} has confidence: {tip.confidence}")
                total = receipt.fields.get("Total")
                if total:
                    print(f"Total: {format_price(total.get('valueCurrency'))} has confidence: {total.confidence}")
            print("--------------------------------------")



if __name__ == "__main__":
    analyze_receipts()

請造訪 GitHub 上的 Azure 範例存放庫,並檢視收據模型輸出

使用身分證明文件模型

import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import AnalyzeResult

# use your `key` and `endpoint` environment variables
key = os.environ.get('DI_KEY')
endpoint = os.environ.get('DI_ENDPOINT')

def analyze_identity_documents():
# sample document
    identityUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/identity_documents.png"

   client = DocumentIntelligenceClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )

    poller =client.begin_analyze_document(
            "prebuilt-idDocument", AnalyzeDocumentRequest(url_source=identityUrl)
        )
     id_documents: AnalyzeResult = poller.result()

    if id_documents.documents:
        for idx, id_document in enumerate(id_documents.documents):
            print(f"--------Analyzing ID document #{idx + 1}--------")
            if id_document.fields:
                first_name = id_document.fields.get("FirstName")
                if first_name:
                    print(f"First Name: {first_name.get('valueString')} has confidence: {first_name.confidence}")
                last_name = id_document.fields.get("LastName")
                if last_name:
                    print(f"Last Name: {last_name.get('valueString')} has confidence: {last_name.confidence}")
                document_number = id_document.fields.get("DocumentNumber")
                if document_number:
                    print(
                        f"Document Number: {document_number.get('valueString')} has confidence: {document_number.confidence}"
                    )
                dob = id_document.fields.get("DateOfBirth")
                if dob:
                    print(f"Date of Birth: {dob.get('valueDate')} has confidence: {dob.confidence}")
                doe = id_document.fields.get("DateOfExpiration")
                if doe:
                    print(f"Date of Expiration: {doe.get('valueDate')} has confidence: {doe.confidence}")
                sex = id_document.fields.get("Sex")
                if sex:
                    print(f"Sex: {sex.get('valueString')} has confidence: {sex.confidence}")
                address = id_document.fields.get("Address")
                if address:
                    print(f"Address: {address.get('valueString')} has confidence: {address.confidence}")
                country_region = id_document.fields.get("CountryRegion")
                if country_region:
                    print(
                        f"Country/Region: {country_region.get('valueCountryRegion')} has confidence: {country_region.confidence}"
                    )
                region = id_document.fields.get("Region")
                if region:
                    print(f"Region: {region.get('valueString')} has confidence: {region.confidence}")


        print("--------------------------------------")

if __name__ == "__main__":
    analyze_identity_documents()

請造訪 GitHub 上的 Azure 範例存放庫,並檢視識別碼文件模型輸出

用戶端程式庫 (英文) |SDK 參考 (英文) | REST API 參考 (部分機器翻譯) | 套件 (PyPi) (英文) | 範例 (英文) | 支援的 REST API 版本 (部分機器翻譯)

用戶端程式庫 (英文) | SDK 參考 (英文) | REST API 參考 (部分機器翻譯) | 套件 (PyPi) (英文) | 範例 (英文) | 支援的 REST API 版本 (部分機器翻譯)

必要條件

  • Azure 訂用帳戶 - 建立免費帳戶

  • Python 3.7 或更新版本 (英文)。 您安裝的 Python 應包含 pip。 您可以在命令列上執行 pip --version 來檢查是否已安裝 pip。 安裝最新版本的 Python 以取得 pip。

  • 最新的 Visual Studio Code 版本或您慣用的 IDE。 請參閱 Visual Studio Code 中的 Python 使用者入門

  • Azure AI 服務或文件智慧服務資源。 建立 single-servicemulti-service。 您可以使用免費定價層 (F0) 來試用服務,之後可升級至付費層以用於實際執行環境。

  • 從您所建立資源的金鑰和端點,將應用程式連線至 Azure 文件智慧服務。

    1. 部署資源之後,請選取 [移至資源]
    2. 在左側導覽功能表中,選取 [金鑰和端點]。
    3. 複製其中一個金鑰和 [端點],以供稍後在本文中使用。

    Azure 入口網站中金鑰與端點位置的螢幕擷取畫面。

  • URL 的文件檔案。 在本專案中,您可以使用下表中針對每個功能所提供的範例表單:

    功能 modelID document-url
    Read 模型 prebuilt-read 範例手冊
    版面配置模型 prebuilt-layout 範例預約確認
    W-2 表單模型 prebuilt-tax.us.w2 範例 W-2 表單
    發票模型 prebuilt-invoice 發票範例
    收據模型 prebuilt-receipt 範例收據
    識別碼文件模型 prebuilt-idDocument 範例身分證明文件
    名片模型 prebuilt-businessCard 範例名片

設定環境變數

若要與此文件智慧服務互動,您必須建立 DocumentAnalysisClient 類別的執行個體。 若要這樣做,請使用 keyendpoint 以從 Azure 入口網站將用戶端具現化。 在此專案中,使用環境變數來儲存和存取認證。

重要

如果您使用 API 金鑰,請將其安全地儲存在別處,例如 Azure Key Vault。 請勿在程式碼中直接包含 API 金鑰,且切勿公開張貼金鑰。

如需 AI 服務安全性的詳細資訊,請參閱驗證對 Azure AI 服務的要求

若要設定文件智慧服務資源金鑰的環境變數,請開啟主控台視窗,並遵循作業系統和開發環境的指示進行。 將 <yourKey><yourEndpoint> 取代為 Azure 入口網站中資源的值。

Windows 中的環境變數不區分大小寫。 這些變數通常會以大寫方式宣告,並加上底線聯結的字組。 在命令提示字元中,執行下列命令:

  1. 設定金鑰變數:

    setx DI_KEY <yourKey>
    
  2. 設定端點變數

    setx DI_ENDPOINT <yourEndpoint>
    
  3. 設定環境變數之後,請關閉 [命令提示字元] 視窗。 值會維持不變,直到您再次變更這些值為止。

  4. 重新啟動任何讀取環境變數的執行中程式。 例如,如果您使用 Visual Studio 或 Visual Studio Code 作為編輯器,則請在執行範例程式碼之前重新啟動。

以下是一些更實用的命令,可與環境變數搭配使用:

Command 動作 範例
setx VARIABLE_NAME= 將值設定為空字串,以刪除環境變數。 setx DI_KEY=
setx VARIABLE_NAME=value 設定或變更環境變數的值。 setx DI_KEY=<yourKey>
set VARIABLE_NAME 顯示特定環境變數的值。 set DI_KEY
set 顯示所有環境變數。 set

設定程式設計環境

在本機環境中開啟終端機主控台視窗,並使用 pip 安裝適用於 Python 的 Azure AI 文件智慧服務用戶端程式庫:

pip install azure-ai-formrecognizer==3.2.0

建立 Python 應用程式

若要與此文件智慧服務互動,您必須建立 DocumentAnalysisClient 類別的執行個體。 若要這樣做,請使用您的金鑰從 Azure 入口網站建立 AzureKeyCredential,並使用 AzureKeyCredential 和文件智慧服務端點來建立 DocumentAnalysisClient 執行個體。

  1. 在編輯器或 IDE 中建立一個名為 form_recognizer_quickstart.py 的新 Python 檔案。

  2. 開啟 form_recognizer_quickstart.py 檔案,然後選取下列其中一個程式碼範例,並複製/貼上您的應用程式:

    • prebuilt-read 模型是所有文件智慧服務模型的核心,而且可以偵測行、字組、位置和語言。 版面配置、一般文件、預建和自訂模型全都使用 read 模型做為從文件擷取文字的基礎。
    • prebuilt-layout 模型會從文件和映像中擷取文字和文字位置、資料表、選取標記和結構資訊。
    • prebuilt-tax.us.w2 模型會擷取美國內部營收服務 (IRS) 稅務表單上所報告的資訊。
    • prebuilt-invoice 模型會以各種格式從銷售發票擷取重要欄位和明細行項目。
    • prebuilt-receipt 模型會擷取印刷和手寫銷售收據的重要資訊。
    • prebuilt-idDocument 模型會擷取美國駕照、國際護照個人資料頁、美國州別識別碼、社會安全卡和永久居民卡的重要資訊。
  3. 從命令提示字元執行 Python 程式碼。

    python form_recognizer_quickstart.py
    

使用讀取模型

import os
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

# use your `key` and `endpoint` environment variables
key = os.environ.get('FR_KEY')
endpoint = os.environ.get('FR_ENDPOINT')

# formatting function
def format_polygon(polygon):
    if not polygon:
        return "N/A"
    return ", ".join(["[{}, {}]".format(p.x, p.y) for p in polygon])


def analyze_read():
    # sample document
    formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/read.png"

    document_analysis_client = DocumentAnalysisClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )

    poller = document_analysis_client.begin_analyze_document_from_url(
        "prebuilt-read", formUrl
    )
    result = poller.result()

    print("Document contains content: ", result.content)

    for idx, style in enumerate(result.styles):
        print(
            "Document contains {} content".format(
                "handwritten" if style.is_handwritten else "no handwritten"
            )
        )

    for page in result.pages:
        print("----Analyzing Read from page #{}----".format(page.page_number))
        print(
            "Page has width: {} and height: {}, measured with unit: {}".format(
                page.width, page.height, page.unit
            )
        )

        for line_idx, line in enumerate(page.lines):
            print(
                "...Line # {} has text content '{}' within bounding box '{}'".format(
                    line_idx,
                    line.content,
                    format_polygon(line.polygon),
                )
            )

        for word in page.words:
            print(
                "...Word '{}' has a confidence of {}".format(
                    word.content, word.confidence
                )
            )

    print("----------------------------------------")


if __name__ == "__main__":
    analyze_read()

請造訪 GitHub 上的 Azure 範例存放庫,並檢視 read 模型輸出

使用版面配置模型

import os
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

# use your `key` and `endpoint` environment variables
key = os.environ.get('FR_KEY')
endpoint = os.environ.get('FR_ENDPOINT')

# formatting function
def format_polygon(polygon):
    if not polygon:
        return "N/A"
    return ", ".join(["[{}, {}]".format(p.x, p.y) for p in polygon])


def analyze_layout():
    # sample document
    formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/layout.png"

    document_analysis_client = DocumentAnalysisClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )

    poller = document_analysis_client.begin_analyze_document_from_url(
        "prebuilt-layout", formUrl
    )
    result = poller.result()

    for idx, style in enumerate(result.styles):
        print(
            "Document contains {} content".format(
                "handwritten" if style.is_handwritten else "no handwritten"
            )
        )

    for page in result.pages:
        print("----Analyzing layout from page #{}----".format(page.page_number))
        print(
            "Page has width: {} and height: {}, measured with unit: {}".format(
                page.width, page.height, page.unit
            )
        )

        for line_idx, line in enumerate(page.lines):
            words = line.get_words()
            print(
                "...Line # {} has word count {} and text '{}' within bounding box '{}'".format(
                    line_idx,
                    len(words),
                    line.content,
                    format_polygon(line.polygon),
                )
            )

            for word in words:
                print(
                    "......Word '{}' has a confidence of {}".format(
                        word.content, word.confidence
                    )
                )

        for selection_mark in page.selection_marks:
            print(
                "...Selection mark is '{}' within bounding box '{}' and has a confidence of {}".format(
                    selection_mark.state,
                    format_polygon(selection_mark.polygon),
                    selection_mark.confidence,
                )
            )

    for table_idx, table in enumerate(result.tables):
        print(
            "Table # {} has {} rows and {} columns".format(
                table_idx, table.row_count, table.column_count
            )
        )
        for region in table.bounding_regions:
            print(
                "Table # {} location on page: {} is {}".format(
                    table_idx,
                    region.page_number,
                    format_polygon(region.polygon),
                )
            )
        for cell in table.cells:
            print(
                "...Cell[{}][{}] has content '{}'".format(
                    cell.row_index,
                    cell.column_index,
                    cell.content,
                )
            )
            for region in cell.bounding_regions:
                print(
                    "...content on page {} is within bounding box '{}'".format(
                        region.page_number,
                        format_polygon(region.polygon),
                    )
                )

    print("----------------------------------------")


if __name__ == "__main__":
    analyze_layout()

請造訪 GitHub 上的 Azure 範例存放庫,並檢視版面配置模型輸出

請使用一般文件模型

import os
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

# use your `key` and `endpoint` environment variables
key = os.environ.get('FR_KEY')
endpoint = os.environ.get('FR_ENDPOINT')

# formatting function
def format_bounding_region(bounding_regions):
    if not bounding_regions:
        return "N/A"
    return ", ".join("Page #{}: {}".format(region.page_number, format_polygon(region.polygon)) for region in bounding_regions)

# formatting function
def format_polygon(polygon):
    if not polygon:
        return "N/A"
    return ", ".join(["[{}, {}]".format(p.x, p.y) for p in polygon])


def analyze_general_documents():
    # sample document
    docUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/sample-layout.pdf"

    # create your `DocumentAnalysisClient` instance and `AzureKeyCredential` variable
    document_analysis_client = DocumentAnalysisClient(endpoint=endpoint, credential=AzureKeyCredential(key))

    poller = document_analysis_client.begin_analyze_document_from_url(
            "prebuilt-document", docUrl)
    result = poller.result()

    for style in result.styles:
        if style.is_handwritten:
            print("Document contains handwritten content: ")
            print(",".join([result.content[span.offset:span.offset + span.length] for span in style.spans]))

    print("----Key-value pairs found in document----")
    for kv_pair in result.key_value_pairs:
        if kv_pair.key:
            print(
                    "Key '{}' found within '{}' bounding regions".format(
                        kv_pair.key.content,
                        format_bounding_region(kv_pair.key.bounding_regions),
                    )
                )
        if kv_pair.value:
            print(
                    "Value '{}' found within '{}' bounding regions\n".format(
                        kv_pair.value.content,
                        format_bounding_region(kv_pair.value.bounding_regions),
                    )
                )

    for page in result.pages:
        print("----Analyzing document from page #{}----".format(page.page_number))
        print(
            "Page has width: {} and height: {}, measured with unit: {}".format(
                page.width, page.height, page.unit
            )
        )

        for line_idx, line in enumerate(page.lines):
            print(
                "...Line # {} has text content '{}' within bounding box '{}'".format(
                    line_idx,
                    line.content,
                    format_polygon(line.polygon),
                )
            )

        for word in page.words:
            print(
                "...Word '{}' has a confidence of {}".format(
                    word.content, word.confidence
                )
            )

        for selection_mark in page.selection_marks:
            print(
                "...Selection mark is '{}' within bounding box '{}' and has a confidence of {}".format(
                    selection_mark.state,
                    format_polygon(selection_mark.polygon),
                    selection_mark.confidence,
                )
            )

    for table_idx, table in enumerate(result.tables):
        print(
            "Table # {} has {} rows and {} columns".format(
                table_idx, table.row_count, table.column_count
            )
        )
        for region in table.bounding_regions:
            print(
                "Table # {} location on page: {} is {}".format(
                    table_idx,
                    region.page_number,
                    format_polygon(region.polygon),
                )
            )
        for cell in table.cells:
            print(
                "...Cell[{}][{}] has content '{}'".format(
                    cell.row_index,
                    cell.column_index,
                    cell.content,
                )
            )
            for region in cell.bounding_regions:
                print(
                    "...content on page {} is within bounding box '{}'\n".format(
                        region.page_number,
                        format_polygon(region.polygon),
                    )
                )
    print("----------------------------------------")


if __name__ == "__main__":
    analyze_general_documents()

請造訪 GitHub 上的 Azure 範例存放庫,並檢視一般文件模型輸出

使用 W-2 稅務模型

import os
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

# use your `key` and `endpoint` environment variables
key = os.environ.get('FR_KEY')
endpoint = os.environ.get('FR_ENDPOINT')

# formatting function
def format_address_value(address_value):
    return f"\n......House/building number: {address_value.house_number}\n......Road: {address_value.road}\n......City: {address_value.city}\n......State: {address_value.state}\n......Postal code: {address_value.postal_code}"


def analyze_tax_us_w2():
    # sample document
    formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/w2.png"

    document_analysis_client = DocumentAnalysisClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )

    poller = document_analysis_client.begin_analyze_document_from_url(
        "prebuilt-tax.us.w2", formUrl
    )
    w2s = poller.result()

    for idx, w2 in enumerate(w2s.documents):
         print("--------Analyzing US Tax W-2 Form #{}--------".format(idx   1))
        form_variant = w2.fields.get("W2FormVariant")
        if form_variant:
            print(
                "Form variant: {} has confidence: {}".format(
                    form_variant.value, form_variant.confidence
                )
            )
        tax_year = w2.fields.get("TaxYear")
        if tax_year:
            print(
                "Tax year: {} has confidence: {}".format(
                    tax_year.value, tax_year.confidence
                )
            )
        w2_copy = w2.fields.get("W2Copy")
        if w2_copy:
            print(
                "W-2 Copy: {} has confidence: {}".format(
                    w2_copy.value,
                    w2_copy.confidence,
                )
            )
        employee = w2.fields.get("Employee")
        if employee:
            print("Employee data:")
            employee_name = employee.value.get("Name")
            if employee_name:
                print(
                    "...Name: {} has confidence: {}".format(
                        employee_name.value, employee_name.confidence
                    )
                )
            employee_ssn = employee.value.get("SocialSecurityNumber")
            if employee_ssn:
                print(
                    "...SSN: {} has confidence: {}".format(
                        employee_ssn.value, employee_ssn.confidence
                    )
                )
            employee_address = employee.value.get("Address")
            if employee_address:
                print(
                    "...Address: {}\n......has confidence: {}".format(
                        format_address_value(employee_address.value),
                        employee_address.confidence,
                    )
                )
            employee_zipcode = employee.value.get("ZipCode")
            if employee_zipcode:
                print(
                    "...Zipcode: {} has confidence: {}".format(
                        employee_zipcode.value, employee_zipcode.confidence
                    )
                )
        control_number = w2.fields.get("ControlNumber")
        if control_number:
            print(
                "Control Number: {} has confidence: {}".format(
                    control_number.value, control_number.confidence
                )
            )
        employer = w2.fields.get("Employer")
        if employer:
            print("Employer data:")
            employer_name = employer.value.get("Name")
            if employer_name:
                print(
                    "...Name: {} has confidence: {}".format(
                        employer_name.value, employer_name.confidence
                    )
                )
            employer_id = employer.value.get("IdNumber")
            if employer_id:
                print(
                    "...ID Number: {} has confidence: {}".format(
                        employer_id.value, employer_id.confidence
                    )
                )
            employer_address = employer.value.get("Address")
            if employer_address:
                print(
                    "...Address: {}\n......has confidence: {}".format(
                        format_address_value(employer_address.value),
                        employer_address.confidence,
                    )
                )
            employer_zipcode = employer.value.get("ZipCode")
            if employer_zipcode:
                print(
                    "...Zipcode: {} has confidence: {}".format(
                        employer_zipcode.value, employer_zipcode.confidence
                    )
                )
        wages_tips = w2.fields.get("WagesTipsAndOtherCompensation")
        if wages_tips:
            print(
                "Wages, tips, and other compensation: {} has confidence: {}".format(
                    wages_tips.value,
                    wages_tips.confidence,
                )
            )
        fed_income_tax_withheld = w2.fields.get("FederalIncomeTaxWithheld")
        if fed_income_tax_withheld:
            print(
                "Federal income tax withheld: {} has confidence: {}".format(
                    fed_income_tax_withheld.value, fed_income_tax_withheld.confidence
                )
            )
        social_security_wages = w2.fields.get("SocialSecurityWages")
        if social_security_wages:
            print(
                "Social Security wages: {} has confidence: {}".format(
                    social_security_wages.value, social_security_wages.confidence
                )
            )
        social_security_tax_withheld = w2.fields.get("SocialSecurityTaxWithheld")
        if social_security_tax_withheld:
            print(
                "Social Security tax withheld: {} has confidence: {}".format(
                    social_security_tax_withheld.value,
                    social_security_tax_withheld.confidence,
                )
            )
        medicare_wages_tips = w2.fields.get("MedicareWagesAndTips")
        if medicare_wages_tips:
            print(
                "Medicare wages and tips: {} has confidence: {}".format(
                    medicare_wages_tips.value, medicare_wages_tips.confidence
                )
            )
        medicare_tax_withheld = w2.fields.get("MedicareTaxWithheld")
        if medicare_tax_withheld:
            print(
                "Medicare tax withheld: {} has confidence: {}".format(
                    medicare_tax_withheld.value, medicare_tax_withheld.confidence
                )
            )
        social_security_tips = w2.fields.get("SocialSecurityTips")
        if social_security_tips:
            print(
                "Social Security tips: {} has confidence: {}".format(
                    social_security_tips.value, social_security_tips.confidence
                )
            )
        allocated_tips = w2.fields.get("AllocatedTips")
        if allocated_tips:
            print(
                "Allocated tips: {} has confidence: {}".format(
                    allocated_tips.value,
                    allocated_tips.confidence,
                )
            )
        verification_code = w2.fields.get("VerificationCode")
        if verification_code:
            print(
                "Verification code: {} has confidence: {}".format(
                    verification_code.value, verification_code.confidence
                )
            )
        dependent_care_benefits = w2.fields.get("DependentCareBenefits")
        if dependent_care_benefits:
            print(
                "Dependent care benefits: {} has confidence: {}".format(
                    dependent_care_benefits.value,
                    dependent_care_benefits.confidence,
                )
            )
        non_qualified_plans = w2.fields.get("NonQualifiedPlans")
        if non_qualified_plans:
            print(
                "Non-qualified plans: {} has confidence: {}".format(
                    non_qualified_plans.value,
                    non_qualified_plans.confidence,
                )
            )
        additional_info = w2.fields.get("AdditionalInfo")
        if additional_info:
            print("Additional information:")
            for item in additional_info.value:
                letter_code = item.value.get("LetterCode")
                if letter_code:
                    print(
                        "...Letter code: {} has confidence: {}".format(
                            letter_code.value, letter_code.confidence
                        )
                    )
                amount = item.value.get("Amount")
                if amount:
                    print(
                        "...Amount: {} has confidence: {}".format(
                            amount.value, amount.confidence
                        )
                    )
        is_statutory_employee = w2.fields.get("IsStatutoryEmployee")
        if is_statutory_employee:
            print(
                "Is statutory employee: {} has confidence: {}".format(
                    is_statutory_employee.value, is_statutory_employee.confidence
                )
            )
        is_retirement_plan = w2.fields.get("IsRetirementPlan")
        if is_retirement_plan:
            print(
                "Is retirement plan: {} has confidence: {}".format(
                    is_retirement_plan.value, is_retirement_plan.confidence
                )
            )
        third_party_sick_pay = w2.fields.get("IsThirdPartySickPay")
        if third_party_sick_pay:
            print(
                "Is third party sick pay: {} has confidence: {}".format(
                    third_party_sick_pay.value, third_party_sick_pay.confidence
                )
            )
        other_info = w2.fields.get("Other")
        if other_info:
            print(
                "Other information: {} has confidence: {}".format(
                    other_info.value,
                    other_info.confidence,
                )
            )
        state_tax_info = w2.fields.get("StateTaxInfos")
        if state_tax_info:
            print("State Tax info:")
            for tax in state_tax_info.value:
                state = tax.value.get("State")
                if state:
                    print(
                        "...State: {} has confidence: {}".format(
                            state.value, state.confidence
                        )
                    )
                employer_state_id_number = tax.value.get("EmployerStateIdNumber")
                if employer_state_id_number:
                    print(
                        "...Employer state ID number: {} has confidence: {}".format(
                            employer_state_id_number.value,
                            employer_state_id_number.confidence,
                        )
                    )
                state_wages_tips = tax.value.get("StateWagesTipsEtc")
                if state_wages_tips:
                    print(
                        "...State wages, tips, etc: {} has confidence: {}".format(
                            state_wages_tips.value, state_wages_tips.confidence
                        )
                    )
                state_income_tax = tax.value.get("StateIncomeTax")
                if state_income_tax:
                    print(
                        "...State income tax: {} has confidence: {}".format(
                            state_income_tax.value, state_income_tax.confidence
                        )
                    )
        local_tax_info = w2.fields.get("LocalTaxInfos")
        if local_tax_info:
            print("Local Tax info:")
            for tax in local_tax_info.value:
                local_wages_tips = tax.value.get("LocalWagesTipsEtc")
                if local_wages_tips:
                    print(
                        "...Local wages, tips, etc: {} has confidence: {}".format(
                            local_wages_tips.value, local_wages_tips.confidence
                        )
                    )
                local_income_tax = tax.value.get("LocalIncomeTax")
                if local_income_tax:
                    print(
                        "...Local income tax: {} has confidence: {}".format(
                            local_income_tax.value, local_income_tax.confidence
                        )
                    )
                locality_name = tax.value.get("LocalityName")
                if locality_name:
                    print(
                        "...Locality name: {} has confidence: {}".format(
                            locality_name.value, locality_name.confidence
                        )
                    )

                print("----------------------------------------")


if __name__ == "__main__":
    analyze_tax_us_w2()

請造訪 GitHub 上的 Azure 範例存放庫,以檢視 W-2 稅務模型輸出

使用發票模型

import os
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

# use your `key` and `endpoint` environment variables
key = os.environ.get('FR_KEY')
endpoint = os.environ.get('FR_ENDPOINT')

# formatting function
def format_bounding_region(bounding_regions):
    if not bounding_regions:
        return "N/A"
    return ", ".join("Page #{}: {}".format(region.page_number, format_polygon(region.polygon)) for region in bounding_regions)

# formatting function
def format_polygon(polygon):
    if not polygon:
        return "N/A"
    return ", ".join(["[{}, {}]".format(p.x, p.y) for p in polygon])


def analyze_invoice():

    invoiceUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/sample-invoice.pdf"

    document_analysis_client = DocumentAnalysisClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )

    poller = document_analysis_client.begin_analyze_document_from_url(
            "prebuilt-invoice", invoiceUrl)
    invoices = poller.result()

    for idx, invoice in enumerate(invoices.documents):
        print("--------Recognizing invoice #{}--------".format(idx + 1))
        vendor_name = invoice.fields.get("VendorName")
        if vendor_name:
            print(
                "Vendor Name: {} has confidence: {}".format(
                    vendor_name.value, vendor_name.confidence
                )
            )
        vendor_address = invoice.fields.get("VendorAddress")
        if vendor_address:
            print(
                "Vendor Address: {} has confidence: {}".format(
                    vendor_address.value, vendor_address.confidence
                )
            )
        vendor_address_recipient = invoice.fields.get("VendorAddressRecipient")
        if vendor_address_recipient:
            print(
                "Vendor Address Recipient: {} has confidence: {}".format(
                    vendor_address_recipient.value, vendor_address_recipient.confidence
                )
            )
        customer_name = invoice.fields.get("CustomerName")
        if customer_name:
            print(
                "Customer Name: {} has confidence: {}".format(
                    customer_name.value, customer_name.confidence
                )
            )
        customer_id = invoice.fields.get("CustomerId")
        if customer_id:
            print(
                "Customer Id: {} has confidence: {}".format(
                    customer_id.value, customer_id.confidence
                )
            )
        customer_address = invoice.fields.get("CustomerAddress")
        if customer_address:
            print(
                "Customer Address: {} has confidence: {}".format(
                    customer_address.value, customer_address.confidence
                )
            )
        customer_address_recipient = invoice.fields.get("CustomerAddressRecipient")
        if customer_address_recipient:
            print(
                "Customer Address Recipient: {} has confidence: {}".format(
                    customer_address_recipient.value,
                    customer_address_recipient.confidence,
                )
            )
        invoice_id = invoice.fields.get("InvoiceId")
        if invoice_id:
            print(
                "Invoice Id: {} has confidence: {}".format(
                    invoice_id.value, invoice_id.confidence
                )
            )
        invoice_date = invoice.fields.get("InvoiceDate")
        if invoice_date:
            print(
                "Invoice Date: {} has confidence: {}".format(
                    invoice_date.value, invoice_date.confidence
                )
            )
        invoice_total = invoice.fields.get("InvoiceTotal")
        if invoice_total:
            print(
                "Invoice Total: {} has confidence: {}".format(
                    invoice_total.value, invoice_total.confidence
                )
            )
        due_date = invoice.fields.get("DueDate")
        if due_date:
            print(
                "Due Date: {} has confidence: {}".format(
                    due_date.value, due_date.confidence
                )
            )
        purchase_order = invoice.fields.get("PurchaseOrder")
        if purchase_order:
            print(
                "Purchase Order: {} has confidence: {}".format(
                    purchase_order.value, purchase_order.confidence
                )
            )
        billing_address = invoice.fields.get("BillingAddress")
        if billing_address:
            print(
                "Billing Address: {} has confidence: {}".format(
                    billing_address.value, billing_address.confidence
                )
            )
        billing_address_recipient = invoice.fields.get("BillingAddressRecipient")
        if billing_address_recipient:
            print(
                "Billing Address Recipient: {} has confidence: {}".format(
                    billing_address_recipient.value,
                    billing_address_recipient.confidence,
                )
            )
        shipping_address = invoice.fields.get("ShippingAddress")
        if shipping_address:
            print(
                "Shipping Address: {} has confidence: {}".format(
                    shipping_address.value, shipping_address.confidence
                )
            )
        shipping_address_recipient = invoice.fields.get("ShippingAddressRecipient")
        if shipping_address_recipient:
            print(
                "Shipping Address Recipient: {} has confidence: {}".format(
                    shipping_address_recipient.value,
                    shipping_address_recipient.confidence,
                )
            )
        print("Invoice items:")
        for idx, item in enumerate(invoice.fields.get("Items").value):
            print("...Item #{}".format(idx + 1))
            item_description = item.value.get("Description")
            if item_description:
                print(
                    "......Description: {} has confidence: {}".format(
                        item_description.value, item_description.confidence
                    )
                )
            item_quantity = item.value.get("Quantity")
            if item_quantity:
                print(
                    "......Quantity: {} has confidence: {}".format(
                        item_quantity.value, item_quantity.confidence
                    )
                )
            unit = item.value.get("Unit")
            if unit:
                print(
                    "......Unit: {} has confidence: {}".format(
                        unit.value, unit.confidence
                    )
                )
            unit_price = item.value.get("UnitPrice")
            if unit_price:
                print(
                    "......Unit Price: {} has confidence: {}".format(
                        unit_price.value, unit_price.confidence
                    )
                )
            product_code = item.value.get("ProductCode")
            if product_code:
                print(
                    "......Product Code: {} has confidence: {}".format(
                        product_code.value, product_code.confidence
                    )
                )
            item_date = item.value.get("Date")
            if item_date:
                print(
                    "......Date: {} has confidence: {}".format(
                        item_date.value, item_date.confidence
                    )
                )
            tax = item.value.get("Tax")
            if tax:
                print(
                    "......Tax: {} has confidence: {}".format(tax.value, tax.confidence)
                )
            amount = item.value.get("Amount")
            if amount:
                print(
                    "......Amount: {} has confidence: {}".format(
                        amount.value, amount.confidence
                    )
                )
        subtotal = invoice.fields.get("SubTotal")
        if subtotal:
            print(
                "Subtotal: {} has confidence: {}".format(
                    subtotal.value, subtotal.confidence
                )
            )
        total_tax = invoice.fields.get("TotalTax")
        if total_tax:
            print(
                "Total Tax: {} has confidence: {}".format(
                    total_tax.value, total_tax.confidence
                )
            )
        previous_unpaid_balance = invoice.fields.get("PreviousUnpaidBalance")
        if previous_unpaid_balance:
            print(
                "Previous Unpaid Balance: {} has confidence: {}".format(
                    previous_unpaid_balance.value, previous_unpaid_balance.confidence
                )
            )
        amount_due = invoice.fields.get("AmountDue")
        if amount_due:
            print(
                "Amount Due: {} has confidence: {}".format(
                    amount_due.value, amount_due.confidence
                )
            )
        service_start_date = invoice.fields.get("ServiceStartDate")
        if service_start_date:
            print(
                "Service Start Date: {} has confidence: {}".format(
                    service_start_date.value, service_start_date.confidence
                )
            )
        service_end_date = invoice.fields.get("ServiceEndDate")
        if service_end_date:
            print(
                "Service End Date: {} has confidence: {}".format(
                    service_end_date.value, service_end_date.confidence
                )
            )
        service_address = invoice.fields.get("ServiceAddress")
        if service_address:
            print(
                "Service Address: {} has confidence: {}".format(
                    service_address.value, service_address.confidence
                )
            )
        service_address_recipient = invoice.fields.get("ServiceAddressRecipient")
        if service_address_recipient:
            print(
                "Service Address Recipient: {} has confidence: {}".format(
                    service_address_recipient.value,
                    service_address_recipient.confidence,
                )
            )
        remittance_address = invoice.fields.get("RemittanceAddress")
        if remittance_address:
            print(
                "Remittance Address: {} has confidence: {}".format(
                    remittance_address.value, remittance_address.confidence
                )
            )
        remittance_address_recipient = invoice.fields.get("RemittanceAddressRecipient")
        if remittance_address_recipient:
            print(
                "Remittance Address Recipient: {} has confidence: {}".format(
                    remittance_address_recipient.value,
                    remittance_address_recipient.confidence,
                )
            )

        print("----------------------------------------")

if __name__ == "__main__":
    analyze_invoice()

請造訪 GitHub 上的 Azure 範例存放庫,並檢視發票模型輸出

使用收據模型

import os
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

# use your `key` and `endpoint` environment variables
key = os.environ.get('FR_KEY')
endpoint = os.environ.get('FR_ENDPOINT')

def analyze_receipts():
    # sample document
    receiptUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/receipt.png"

    document_analysis_client = DocumentAnalysisClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )
    poller = document_analysis_client.begin_analyze_document_from_url(
        "prebuilt-receipt", receiptUrl, locale="en-US"
    )
    receipts = poller.result()
    for idx, receipt in enumerate(receipts.documents):
         print("--------Analysis of receipt #{}--------".format(idx   1))
        print("Receipt type: {}".format(receipt.doc_type or "N/A"))
        merchant_name = receipt.fields.get("MerchantName")
        if merchant_name:
            print(
                "Merchant Name: {} has confidence: {}".format(
                    merchant_name.value, merchant_name.confidence
                )
            )
        transaction_date = receipt.fields.get("TransactionDate")
        if transaction_date:
            print(
                "Transaction Date: {} has confidence: {}".format(
                    transaction_date.value, transaction_date.confidence
                )
            )
        if receipt.fields.get("Items"):
            print("Receipt items:")
            for idx, item in enumerate(receipt.fields.get("Items").value):
                 print("...Item #{}".format(idx   1))
                item_description = item.value.get("Description")
                if item_description:
                    print(
                        "......Item Description: {} has confidence: {}".format(
                            item_description.value, item_description.confidence
                        )
                    )
                item_quantity = item.value.get("Quantity")
                if item_quantity:
                    print(
                        "......Item Quantity: {} has confidence: {}".format(
                            item_quantity.value, item_quantity.confidence
                        )
                    )
                item_price = item.value.get("Price")
                if item_price:
                    print(
                        "......Individual Item Price: {} has confidence: {}".format(
                            item_price.value, item_price.confidence
                        )
                    )
                item_total_price = item.value.get("TotalPrice")
                if item_total_price:
                    print(
                        "......Total Item Price: {} has confidence: {}".format(
                            item_total_price.value, item_total_price.confidence
                        )
                    )
        subtotal = receipt.fields.get("Subtotal")
        if subtotal:
            print(
                "Subtotal: {} has confidence: {}".format(
                    subtotal.value, subtotal.confidence
                )
            )
        tax = receipt.fields.get("TotalTax")
        if tax:
            print("Total tax: {} has confidence: {}".format(tax.value, tax.confidence))
        tip = receipt.fields.get("Tip")
        if tip:
            print("Tip: {} has confidence: {}".format(tip.value, tip.confidence))
        total = receipt.fields.get("Total")
        if total:
            print("Total: {} has confidence: {}".format(total.value, total.confidence))
        print("--------------------------------------")


if __name__ == "__main__":
    analyze_receipts()

請造訪 GitHub 上的 Azure 範例存放庫,並檢視收據模型輸出

使用身分證明文件模型

import os
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

# use your `key` and `endpoint` environment variables
key = os.environ.get('FR_KEY')
endpoint = os.environ.get('FR_ENDPOINT')

def analyze_identity_documents():
# sample document
    identityUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/identity_documents.png"

    document_analysis_client = DocumentAnalysisClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )

    poller = document_analysis_client.begin_analyze_document_from_url(
            "prebuilt-idDocument", identityUrl
        )
    id_documents = poller.result()

    for idx, id_document in enumerate(id_documents.documents):
        print("--------Analyzing ID document #{}--------".format(idx + 1))
        first_name = id_document.fields.get("FirstName")
        if first_name:
            print(
                "First Name: {} has confidence: {}".format(
                    first_name.value, first_name.confidence
                )
            )
        last_name = id_document.fields.get("LastName")
        if last_name:
            print(
                "Last Name: {} has confidence: {}".format(
                    last_name.value, last_name.confidence
                )
            )
        document_number = id_document.fields.get("DocumentNumber")
        if document_number:
            print(
                "Document Number: {} has confidence: {}".format(
                    document_number.value, document_number.confidence
                )
            )
        dob = id_document.fields.get("DateOfBirth")
        if dob:
            print(
                "Date of Birth: {} has confidence: {}".format(dob.value, dob.confidence)
            )
        doe = id_document.fields.get("DateOfExpiration")
        if doe:
            print(
                "Date of Expiration: {} has confidence: {}".format(
                    doe.value, doe.confidence
                )
            )
        sex = id_document.fields.get("Sex")
        if sex:
            print("Sex: {} has confidence: {}".format(sex.value, sex.confidence))
        address = id_document.fields.get("Address")
        if address:
            print(
                "Address: {} has confidence: {}".format(
                    address.value, address.confidence
                )
            )
        country_region = id_document.fields.get("CountryRegion")
        if country_region:
            print(
                "Country/Region: {} has confidence: {}".format(
                    country_region.value, country_region.confidence
                )
            )
        region = id_document.fields.get("Region")
        if region:
            print(
                "Region: {} has confidence: {}".format(region.value, region.confidence)
            )

        print("--------------------------------------")

if __name__ == "__main__":
    analyze_identity_documents()

請造訪 GitHub 上的 Azure 範例存放庫,並檢視識別碼文件模型輸出

使用名片模型

import os
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential

# use your `key` and `endpoint` environment variables
key = os.environ.get('FR_KEY')
endpoint = os.environ.get('FR_ENDPOINT')

def analyze_business_card():
      # sample document
    businessCardUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/de5e0d8982ab754823c54de47a47e8e499351523/curl/form-recognizer/rest-api/business_card.jpg"

    document_analysis_client = DocumentAnalysisClient(
        endpoint=endpoint, credential=AzureKeyCredential(key)
    )

    poller = document_analysis_client.begin_analyze_document_from_url(
            "prebuilt-businessCard", businessCardUrl, locale="en-US"
        )
    business_cards = poller.result()

    for idx, business_card in enumerate(business_cards.documents):
        print("--------Analyzing business card #{}--------".format(idx + 1))
        contact_names = business_card.fields.get("ContactNames")
        if contact_names:
            for contact_name in contact_names.value:
                print(
                    "Contact First Name: {} has confidence: {}".format(
                        contact_name.value["FirstName"].value,
                        contact_name.value[
                            "FirstName"
                        ].confidence,
                    )
                )
                print(
                    "Contact Last Name: {} has confidence: {}".format(
                        contact_name.value["LastName"].value,
                        contact_name.value[
                            "LastName"
                        ].confidence,
                    )
                )
        company_names = business_card.fields.get("CompanyNames")
        if company_names:
            for company_name in company_names.value:
                print(
                    "Company Name: {} has confidence: {}".format(
                        company_name.value, company_name.confidence
                    )
                )
        departments = business_card.fields.get("Departments")
        if departments:
            for department in departments.value:
                print(
                    "Department: {} has confidence: {}".format(
                        department.value, department.confidence
                    )
                )
        job_titles = business_card.fields.get("JobTitles")
        if job_titles:
            for job_title in job_titles.value:
                print(
                    "Job Title: {} has confidence: {}".format(
                        job_title.value, job_title.confidence
                    )
                )
        emails = business_card.fields.get("Emails")
        if emails:
            for email in emails.value:
                print(
                    "Email: {} has confidence: {}".format(email.value, email.confidence)
                )
        websites = business_card.fields.get("Websites")
        if websites:
            for website in websites.value:
                print(
                    "Website: {} has confidence: {}".format(
                        website.value, website.confidence
                    )
                )
        addresses = business_card.fields.get("Addresses")
        if addresses:
            for address in addresses.value:
                print(
                    "Address: {} has confidence: {}".format(
                        address.value, address.confidence
                    )
                )
        mobile_phones = business_card.fields.get("MobilePhones")
        if mobile_phones:
            for phone in mobile_phones.value:
                print(
                    "Mobile phone number: {} has confidence: {}".format(
                        phone.content, phone.confidence
                    )
                )
        faxes = business_card.fields.get("Faxes")
        if faxes:
            for fax in faxes.value:
                print(
                    "Fax number: {} has confidence: {}".format(
                        fax.content, fax.confidence
                    )
                )
        work_phones = business_card.fields.get("WorkPhones")
        if work_phones:
            for work_phone in work_phones.value:
                print(
                    "Work phone number: {} has confidence: {}".format(
                        work_phone.content, work_phone.confidence
                    )
                )
        other_phones = business_card.fields.get("OtherPhones")
        if other_phones:
            for other_phone in other_phones.value:
                print(
                    "Other phone number: {} has confidence: {}".format(
                        other_phone.value, other_phone.confidence
                    )
                )

        print("--------------------------------------")

if __name__ == "__main__":
    analyze_business_card()

請造訪 GitHub 上的 Azure 範例存放庫,並檢視名片模型輸出

注意

此專案使用 cURL 命令列工具來執行 REST API 呼叫。

| 文件智慧服務 REST API (部分機器翻譯) | 支援的 Azure SDK (部分機器翻譯)

必要條件

  • Azure 訂用帳戶 - 建立免費帳戶

  • 已安裝 cURL 命令列工具。 Windows 10 和 Windows 11 隨附 cURL 的複本。 在命令提示字元中,輸入下列 cURL 命令。 如果顯示說明選項,則會在您的 Windows 環境中安裝 cURL。

    curl -help
    

    如果未安裝 cURL,您可以在這裡取得:

  • Azure AI 服務或文件智慧服務資源。 建立 single-servicemulti-service。 您可以使用免費定價層 (F0) 來試用服務,之後可升級至付費層以用於實際執行環境。

  • 從您所建立資源的金鑰和端點,將應用程式連線至 Azure 文件智慧服務。

    1. 部署資源之後,請選取 [移至資源]
    2. 在左側導覽功能表中,選取 [金鑰和端點]。
    3. 複製其中一個金鑰和 [端點],以供稍後在本文中使用。

    Azure 入口網站中金鑰與端點位置的螢幕擷取畫面。

設定環境變數

若要與此文件智慧服務互動,您必須建立 DocumentAnalysisClient 類別的執行個體。 若要這樣做,請使用 keyendpoint 以從 Azure 入口網站將用戶端具現化。 在此專案中,使用環境變數來儲存和存取認證。

重要

如果您使用 API 金鑰,請將其安全地儲存在別處,例如 Azure Key Vault。 請勿在程式碼中直接包含 API 金鑰,且切勿公開張貼金鑰。

如需 AI 服務安全性的詳細資訊,請參閱驗證對 Azure AI 服務的要求

若要設定文件智慧服務資源金鑰的環境變數,請開啟主控台視窗,並遵循作業系統和開發環境的指示進行。 將 <yourKey><yourEndpoint> 取代為 Azure 入口網站中資源的值。

Windows 中的環境變數不區分大小寫。 這些變數通常會以大寫方式宣告,並加上底線聯結的字組。 在命令提示字元中,執行下列命令:

  1. 設定金鑰變數:

    setx DI_KEY <yourKey>
    
  2. 設定端點變數

    setx DI_ENDPOINT <yourEndpoint>
    
  3. 設定環境變數之後,請關閉 [命令提示字元] 視窗。 值會維持不變,直到您再次變更這些值為止。

  4. 重新啟動任何讀取環境變數的執行中程式。 例如,如果您使用 Visual Studio 或 Visual Studio Code 作為編輯器,則請在執行範例程式碼之前重新啟動。

以下是一些更實用的命令,可與環境變數搭配使用:

Command 動作 範例
setx VARIABLE_NAME= 將值設定為空字串,以刪除環境變數。 setx DI_KEY=
setx VARIABLE_NAME=value 設定或變更環境變數的值。 setx DI_KEY=<yourKey>
set VARIABLE_NAME 顯示特定環境變數的值。 set DI_KEY
set 顯示所有環境變數。 set

分析文件並取得結果

POST 要求可用來以預建或自訂模型分析文件。 GET 要求可用來擷取文件分析呼叫的結果。 modelId 用於 POST 作業,resultId 則用於 GET 作業。

使用下表做為參考。 將 <modelId><document-url> 取代為您所需的值:

模型 modelId description document-url
Read 模型 prebuilt-read 範例手冊 https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/read.png
版面配置模型 prebuilt-layout 範例預約確認 https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/layout.png
W-2 表單模型 prebuilt-tax.us.w2 範例 W-2 表單 https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/w2.png
發票模型 prebuilt-invoice 發票範例 https://github.com/Azure-Samples/cognitive-services-REST-api-samples/raw/master/curl/form-recognizer/rest-api/invoice.pdf
收據模型 prebuilt-receipt 範例收據 https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/receipt.png
識別碼文件模型 prebuilt-idDocument 範例身分證明文件 https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/identity_documents.png

POST 要求

開啟主控台視窗,然後執行下列 cURL 命令: 在上述〈設定環境變數〉一節中所建立的端點和重要環境變數。 如果您的變數名稱不同,則請取代這些變數。 請記得取代 <modelId><document-url> 參數。

curl -i -X POST "%DI_ENDPOINT%/documentintelligence/documentModels/{modelId}:analyze?api-version=2024-02-29-preview" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: %DI_KEY%" --data-ascii "{'urlSource': '<document-url>'}"

若要啟用附加元件功能,請使用 POST 要求中的 features 查詢參數。 2023-07-31 (GA) 版本和更新版本共提供四個附加元件功能:ocr.highResolutionocr.formulaocr.fontqueryFields.premium。 若要一一了解這些功能,請參閱自訂模型

您只能呼叫 Read 和 Layout 模型的 highResolution公式字型功能,以及一般文件模型的 queryFields 功能。 下列範例示範如何呼叫 Layout 模型的 highResolution公式字型功能。

curl -i -X POST "%DI_ENDPOINT%documentintelligence/documentModels/prebuilt-layout:analyze?features=ocr.highResolution,ocr.formula,ocr.font?api-version=2024-02-29-preview" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: %DI_KEY%" --data-ascii "{'urlSource': '<document-url>'}"

POST 回應

您收到 202 (Success) 回應,其中包含 Operation-location 標頭。 使用此標頭的值來擷取回應結果。

顯示 POST 回應的螢幕擷取畫面,其中已醒目提示作業位置。

取得分析結果 (GET 要求)

呼叫 Analyze document API 之後,請呼叫 [Get analyze result}(/rest/api/aiservices/document-models/get-analyze-result?view=rest-aiservices-2024-02-29-preview&preserve-view=true&tabs=HTTP) API,以取得作業的狀態和擷取的資料。

cURL 命令列工具不會格式化包含 JSON 內容的 API 回應,而這樣會讓內容難以閱讀。 若要格式化 JSON 回應,請包含管道字元,後面接著具有 GET 要求的 JSON 格式設定工具。

使用 NodeJS「json 工具」作為 cURL 的 JSON 格式器。 如果您尚未安裝 Node.js,則請下載並安裝最新版本。

  1. 開啟主控台視窗,並使用下列命令安裝 json 工具:

    npm install -g jsontool
    
  2. 包括管道字元 | json 與 GET 要求,以最適當地列印 JSON 輸出

    curl -i -X GET "<endpoint>documentintelligence/documentModels/prebuilt-read/analyzeResults/0e49604a-2d8e-4b15-b6b8-bb456e5d3e0a?api-version=2024-02-29-preview"-H "Ocp-Apim-Subscription-Key: <subscription key>" | json
    

GET 要求

在執行下列命令前,請進行變更:

  • <POST 回應>取代為 POST 回應中的 Operation-location 標頭。
  • 如果與程式碼中的名稱不同,請將 <DI_KEY 取代為您環境變數的變數。
  • 將 *<json-tool> 取代為您的 JSON 格式工具。
curl -i -X GET "<POST response>" -H "Ocp-Apim-Subscription-Key: %DI_KEY%" | `<json-tool>`

檢查回應

您收到 200 (Success) 回應及 JSON 輸出。 第一個 status 欄位會指出作業的狀態。 如果工作未完成,則的值 statusrunningnotStarted。 手動或透過指令碼再次呼叫 API。 我們建議您在每個呼叫之前間隔一秒以上的時間。

請造訪 GitHub 上的 Azure 範例存放庫,以檢視每個文件智慧服務模型的 GET 回應:

模型 輸出 URL
Read 模型 讀取模型輸出
版面配置模型 版面配置模型輸出
W-2 稅務模型 W-2 稅務模型輸出
發票模型 發票模型輸出
收據模型 收據模型輸出
識別碼文件模型 識別碼文件模型輸出

| 文件智慧服務 REST API (部分機器翻譯) | 支援的 Azure SDK | (部分機器翻譯)

| 文件智慧服務 REST API (部分機器翻譯) | 支援的 Azure SDK | (部分機器翻譯)

注意

此專案使用 cURL 命令列工具來執行 REST API 呼叫。

必要條件

  • Azure 訂用帳戶 - 建立免費帳戶

  • 已安裝 cURL 命令列工具。 Windows 10 和 Windows 11 隨附 cURL 的複本。 在命令提示字元中,輸入下列 cURL 命令。 如果顯示說明選項,則會在您的 Windows 環境中安裝 cURL。

    curl -help
    

    如果未安裝 cURL,您可以在這裡取得:

  • Azure AI 服務或文件智慧服務資源。 建立 single-servicemulti-service。 您可以使用免費定價層 (F0) 來試用服務,之後可升級至付費層以用於實際執行環境。

  • 從您所建立資源的金鑰和端點,將應用程式連線至 Azure 文件智慧服務。

    1. 部署資源之後,請選取 [移至資源]
    2. 在左側導覽功能表中,選取 [金鑰和端點]。
    3. 複製其中一個金鑰和 [端點],以供稍後在本文中使用。

    Azure 入口網站中金鑰與端點位置的螢幕擷取畫面。

設定環境變數

若要與此文件智慧服務互動,您必須建立 DocumentAnalysisClient 類別的執行個體。 若要這樣做,請使用 keyendpoint 以從 Azure 入口網站將用戶端具現化。 在此專案中,使用環境變數來儲存和存取認證。

重要

如果您使用 API 金鑰,請將其安全地儲存在別處,例如 Azure Key Vault。 請勿在程式碼中直接包含 API 金鑰,且切勿公開張貼金鑰。

如需 AI 服務安全性的詳細資訊,請參閱驗證對 Azure AI 服務的要求

若要設定文件智慧服務資源金鑰的環境變數,請開啟主控台視窗,並遵循作業系統和開發環境的指示進行。 將 <yourKey><yourEndpoint> 取代為 Azure 入口網站中資源的值。

Windows 中的環境變數不區分大小寫。 這些變數通常會以大寫方式宣告,並加上底線聯結的字組。 在命令提示字元中,執行下列命令:

  1. 設定金鑰變數:

    setx DI_KEY <yourKey>
    
  2. 設定端點變數

    setx DI_ENDPOINT <yourEndpoint>
    
  3. 設定環境變數之後,請關閉 [命令提示字元] 視窗。 值會維持不變,直到您再次變更這些值為止。

  4. 重新啟動任何讀取環境變數的執行中程式。 例如,如果您使用 Visual Studio 或 Visual Studio Code 作為編輯器,則請在執行範例程式碼之前重新啟動。

以下是一些更實用的命令,可與環境變數搭配使用:

Command 動作 範例
setx VARIABLE_NAME= 將值設定為空字串,以刪除環境變數。 setx DI_KEY=
setx VARIABLE_NAME=value 設定或變更環境變數的值。 setx DI_KEY=<yourKey>
set VARIABLE_NAME 顯示特定環境變數的值。 set DI_KEY
set 顯示所有環境變數。 set

分析文件並取得結果

POST 要求可用來以預建或自訂模型分析文件。 GET 要求可用來擷取文件分析呼叫的結果。 modelId 用於 POST 作業,resultId 則用於 GET 作業。

使用下表做為參考。 將 <modelId><document-url> 取代為您所需的值:

模型 modelId description document-url
Read 模型 prebuilt-read 範例手冊 https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/read.png
版面配置模型 prebuilt-layout 範例預約確認 https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/layout.png
W-2 表單模型 prebuilt-tax.us.w2 範例 W-2 表單 https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/w2.png
發票模型 prebuilt-invoice 發票範例 https://github.com/Azure-Samples/cognitive-services-REST-api-samples/raw/master/curl/form-recognizer/rest-api/invoice.pdf
收據模型 prebuilt-receipt 範例收據 https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/receipt.png
識別碼文件模型 prebuilt-idDocument 範例身分證明文件 https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/rest-api/identity_documents.png

POST 要求

開啟主控台視窗,然後執行下列 cURL 命令: 在上述〈設定環境變數〉一節中所建立的端點和重要環境變數。 如果您的變數名稱不同,則請取代這些變數。 請記得取代 <modelId><document-url> 參數。

curl -i -X POST "%FR_ENDPOINT%formrecognizer/documentModels/<modelId>:analyze?api-version=2023-07-31" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: %FR_KEY%" --data-ascii "{'urlSource': '<document-url>'}"

若要啟用附加元件功能,請使用 POST 要求中的 features 查詢參數。 2023-07-31 (GA) 版本共提供四個附加元件功能:ocr.highResolutionocr.formulaocr.fontqueryFields.premium。 若要一一了解這些功能,請參閱自訂模型

您只能呼叫 Read 和 Layout 模型的 highResolution公式字型功能,以及一般文件模型的 queryFields 功能。 下列範例示範如何呼叫 Layout 模型的 highResolution公式字型功能。

curl -i -X POST "%FR_ENDPOINT%formrecognizer/documentModels/prebuilt-layout:analyze?features=ocr.highResolution,ocr.formula,ocr.font?api-version=2023-07-31" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: %FR_KEY%" --data-ascii "{'urlSource': '<document-url>'}"

POST 回應

您收到 202 (Success) 回應,其中包含 Operation-location 標頭。 使用此標頭的值來擷取回應結果。

顯示 POST 回應的螢幕擷取畫面,其中已醒目提示作業位置。

取得分析結果 (GET 要求)

呼叫 Analyze document API 之後,請呼叫 [Get analyze result}(/rest/api/aiservices/document-models/get-analyze-result?view=rest-aiservices-2023-07-31&preserve-view=true&tabs=HTTP) API,以取得作業的狀態和擷取的資料。

cURL 命令列工具不會格式化包含 JSON 內容的 API 回應,而這樣會讓內容難以閱讀。 若要格式化 JSON 回應,請包含管道字元,後面接著具有 GET 要求的 JSON 格式設定工具。

使用 NodeJS「json 工具」作為 cURL 的 JSON 格式器。 如果您尚未安裝 Node.js,則請下載並安裝最新版本。

  1. 開啟主控台視窗,並使用下列命令安裝 json 工具:

    npm install -g jsontool
    
  2. 包括管道字元 | json 與 GET 要求,以最適當地列印 JSON 輸出

    curl -i -X GET "<endpoint>formrecognizer/documentModels/prebuilt-read/analyzeResults/0e49604a-2d8e-4b15-b6b8-bb456e5d3e0a?api-version=2023-07-31"-H "Ocp-Apim-Subscription-Key: <subscription key>" | json
    

GET 要求

在執行下列命令前,請進行變更:

  • <POST 回應>取代為 POST 回應中的 Operation-location 標頭。
  • 如果與程式碼中的名稱不同,請將 <FR_KEY 取代為您環境變數的變數。
  • 將 *<json-tool> 取代為您的 JSON 格式工具。
curl -i -X GET "<POST response>" -H "Ocp-Apim-Subscription-Key: %FR_KEY%" | `<json-tool>`

檢查回應

您收到 200 (Success) 回應及 JSON 輸出。 第一個 status 欄位會指出作業的狀態。 如果工作未完成,則的值 statusrunningnotStarted。 手動或透過指令碼再次呼叫 API。 我們建議您在每個呼叫之前間隔一秒以上的時間。

請造訪 GitHub 上的 Azure 範例存放庫,以檢視每個文件智慧服務模型的 GET 回應:

模型 輸出 URL
Read 模型 讀取模型輸出
版面配置模型 版面配置模型輸出
W-2 稅務模型 W-2 稅務模型輸出
發票模型 發票模型輸出
收據模型 收據模型輸出
識別碼文件模型 識別碼文件模型輸出

下一步

恭喜! 您了解如何使用文件智慧服務模型,以不同方式分析各種文件。 接下來,請探索文件智慧服務工作室和參考文件。

在本操作指南中,您會了解如何將文件智慧服務新增至您的應用程式和工作流程。 使用您選擇的程式設計語言或 REST API。 Azure AI 文件智慧服務是雲端式 Azure AI 服務,其使用機器學習從文件中擷取機碼值組、文字和資料表。 當您學習技術時,我們建議您使用免費的服務。 請記住,免費的頁數限制為每個月 500 頁。

您使用下列 API 擷取表單和文件中的結構化資料:

重要

此專案是針對文件智慧服務 REST API 版本 v2.1。

本文中的程式碼使用同步方法和未受保護的認證儲存體。

參考文件 | 程式庫來源程式碼 | 套件 (NuGet) | 範例

必要條件

  • Azure 訂用帳戶 - 建立免費帳戶

  • Visual Studio IDE 或目前版本的 .NET Core

  • 包含一組訓練資料的 Azure 儲存體 Blob。 請參閱建置和定型自訂模型,以獲得如何將訓練資料集放在一起的祕訣和選項。 在本專案中,您可以使用範例資料集Train 資料夾底下的檔案。 下載 sample_data .zip並將其解壓縮。

  • 智慧服務資源。 您可以使用免費定價層 (F0) 來試用服務,之後可升級至付費層以用於實際執行環境。

  • 從您所建立資源的金鑰和端點,將應用程式連線至 Azure 文件智慧服務。

    1. 部署資源之後,請選取 [移至資源]
    2. 在左側導覽功能表中,選取 [金鑰和端點]。
    3. 複製其中一個金鑰和 [端點],以供稍後在本文中使用。

    Azure 入口網站中金鑰與端點位置的螢幕擷取畫面。

設定程式設計環境

在主控台視窗中,使用 dotnet new 命令建立名為 formrecognizer-project 的新主控台應用程式。 此命令會建立簡單的 "Hello World" C# 專案,內含單一原始程式檔:program.cs

dotnet new console -n formrecognizer-project

將目錄變更為新建立的應用程式資料夾。 您可以使用下列命令建置應用程式:

dotnet build

建置輸出應該不會有警告或錯誤。

...
Build succeeded.
 0 Warning(s)
 0 Error(s)
...

安裝用戶端程式庫

在應用程式目錄中,使用下列命令安裝適用於 .NET 的文件智慧服務用戶端程式庫:

dotnet add package Azure.AI.FormRecognizer --version 3.1.1

從專案目錄,在編輯器或 IDE 中開啟 program.cs 檔案。 新增下列 using 指示詞:

using Azure;
using Azure.AI.FormRecognizer;  
using Azure.AI.FormRecognizer.Models;
using Azure.AI.FormRecognizer.Training;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;

在應用程式的 Program 類別中,為資源的金鑰和端點建立變數。

重要

前往 Azure 入口網站。 如果已成功部署您在 [必要條件] 區段中所建立的文件智慧服務資源,請選取 [後續步驟] 下的 [前往資源] 按鈕。 在左側導覽功能表中,於 [資源管理] 下選取 [金鑰和端點]

切記,完成時請從程式碼中移除金鑰。 切勿公開發佈金鑰。 針對實際執行環境,請使用安全的方法來儲存和存取您的認證。 如需詳細資訊,請參閱 Azure AI 服務安全性

private static readonly string endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
private static readonly string apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
private static readonly AzureKeyCredential credential = new AzureKeyCredential(apiKey);

在應用程式的 Main 方法中,新增對此專案中所用非同步工作的呼叫:

static void Main(string[] args) {
  // new code:
  var recognizeContent = RecognizeContent(recognizerClient);
  Task.WaitAll(recognizeContent);

  var analyzeReceipt = AnalyzeReceipt(recognizerClient, receiptUrl);
  Task.WaitAll(analyzeReceipt);

  var analyzeBusinessCard = AnalyzeBusinessCard(recognizerClient, bcUrl);
  Task.WaitAll(analyzeBusinessCard);

  var analyzeInvoice = AnalyzeInvoice(recognizerClient, invoiceUrl);
  Task.WaitAll(analyzeInvoice);

  var analyzeId = AnalyzeId(recognizerClient, idUrl);
  Task.WaitAll(analyzeId);

  var trainModel = TrainModel(trainingClient, trainingDataUrl);
  Task.WaitAll(trainModel);

  var trainModelWithLabels = TrainModelWithLabels(trainingClient, trainingDataUrl);
  Task.WaitAll(trainModel);

  var analyzeForm = AnalyzePdfForm(recognizerClient, modelId, formUrl);
  Task.WaitAll(analyzeForm);

  var manageModels = ManageModels(trainingClient, trainingDataUrl);
  Task.WaitAll(manageModels);

}

使用物件模型

透過文件智慧服務,您可以建立兩種不同的用戶端類型。 第一個是 FormRecognizerClient,會查詢服務,以辨識出表單欄位和內容。 第二個是 FormTrainingClient,會建立及管理自訂模型,以改善辨識效果。

FormRecognizerClient 提供下列作業:

  • 使用已定型的自訂模型辨識表單欄位和內容,以分析自訂表單。 這些值會在 RecognizedForm 物件的集合中傳回。 請參閱使用自訂模型分析表單
  • 辨識表單內容,包括資料表、行和字組,無須定型模型。 表單內容會在 FormPage 物件的集合中傳回。 請參閱分析版面配置
  • 使用文件智慧服務服務上已預先定型的模型,辨識美國收據、名片、發票和身分證明文件中的常見欄位。

FormTrainingClient 會提供作業以:

  • 將自訂模型定型,以分析在自訂表單中找到的所有欄位和值。 傳回的 CustomFormModel 會指出模型用以分析的表單類型,以及其會針對每個表單類型來擷取的欄位。
  • 將自訂模型定型,藉由為自訂表單加上標籤來分析您指定的特定欄位和值。 傳回的 CustomFormModel 會指出模型會擷取的欄位,以及每個欄位的預估正確性。
  • 管理在您的帳戶中建立的模型。
  • 將自訂模型從一個文件智慧服務資源複製到另一個。

如需範例,請參閱將模型定型管理自訂模型

注意

您也可以使用圖形化使用者介面 (例如範例標記工具) 將模型定型。

驗證用戶端

Main 底下中,建立名為 AuthenticateClient 的方法。 在其他工作中使用此方法,以驗證向文件智慧服務提出的要求。 此方法會使用 AzureKeyCredential 物件,這樣當您有需要時,不必建立新的用戶端物件就能更新金鑰。

private static FormRecognizerClient AuthenticateClient()
{
    var credential = new AzureKeyCredential(apiKey);
    var client = new FormRecognizerClient(new Uri(endpoint), credential);
    return client;
}

針對驗證訓練用戶端的新方法重複步驟。

static private FormTrainingClient AuthenticateTrainingClient()
{
    var credential = new AzureKeyCredential(apiKey);
    var client = new FormTrainingClient(new Uri(endpoint), credential);
    return client;
}

取得用於測試的資產

您也需要為訓練和測試資料新增 URL 的參考。 將這些參考新增至 Program 類別的根目錄。

  1. 若要擷取自訂模型訓練資料的 SAS URL,請移至 Azure 入口網站中的儲存體資源,然後選取 [資料儲存]>[容器]

  2. 瀏覽至您的容器,以滑鼠右鍵按一下,然後選取 [產生 SAS]

    取得您容器的 SAS,而不是儲存體帳戶本身的 SAS。

  3. 確定 [讀取]、[寫入]、[刪除] 和 [列出] 權限均已選取,然後選取 [產生 SAS 權杖和 URL]

  4. 將 [URL] 區段中的值複製到暫存位置。 其格式應該為:https://<storage account>.blob.core.windows.net/<container name>?<SAS value>

重複先前步驟以取得 Blob 儲存體容器中個別文件的 SAS URL。 將 SAS URL 儲存至暫存位置。

儲存所包含範例影像的 URL。 該映像也可在 GitHub 上取得。

string trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
string formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
string receiptUrl = "https://docs.microsoft.com/azure/cognitive-services/form-recognizer/media" + "/contoso-allinone.jpg";
string bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg";
string invoiceUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

string idUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg";

分析版面配置

您可以使用文件智慧服務來分析文件中的資料表、行和字組,而不需要訓練模型。 傳回的值是 FormPage 物件的集合。 提交的文件中每個頁面都有一個物件。 如需版面配置擷取的詳細資訊,請參閱文件智慧服務版面配置模型

若要分析位於指定 URL 的檔案內容,請使用 StartRecognizeContentFromUri 方法。

private static async Task RecognizeContent(FormRecognizerClient recognizerClient)
{
    var invoiceUri = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    FormPageCollection formPages = await recognizerClient
        .StartRecognizeContentFromUri(new Uri(invoiceUri))
        .WaitForCompletionAsync();

提示

您也可以從本機檔案取得內容。 請參閱 FormRecognizerClient 方法,例如 StartRecognizeContent。 或者,如需本機映像的相關案例,請參閱 GitHub 上的範例程式碼。

此工作的其餘部分會將內容資訊列印至主控台。

    foreach (FormPage page in formPages)
    {
        Console.WriteLine($"Form Page {page.PageNumber} has {page.Lines.Count} lines.");

        for (int i = 0; i < page.Lines.Count; i++)
        {
            FormLine line = page.Lines[i];
            Console.WriteLine($"    Line {i} has {line.Words.Count} word{(line.Words.Count > 1 ? "s" : "")}, and text: '{line.Text}'.");
        }

        for (int i = 0; i < page.Tables.Count; i++)
        {
            FormTable table = page.Tables[i];
            Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
            foreach (FormTableCell cell in table.Cells)
            {
                Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains text: '{cell.Text}'.");
            }
        }
    }
}

結果看起來如下輸出。

Form Page 1 has 18 lines.
    Line 0 has 1 word, and text: 'Contoso'.
    Line 1 has 1 word, and text: 'Address:'.
    Line 2 has 3 words, and text: 'Invoice For: Microsoft'.
    Line 3 has 4 words, and text: '1 Redmond way Suite'.
    Line 4 has 3 words, and text: '1020 Enterprise Way'.
    Line 5 has 3 words, and text: '6000 Redmond, WA'.
    Line 6 has 3 words, and text: 'Sunnayvale, CA 87659'.
    Line 7 has 1 word, and text: '99243'.
    Line 8 has 2 words, and text: 'Invoice Number'.
    Line 9 has 2 words, and text: 'Invoice Date'.
    Line 10 has 3 words, and text: 'Invoice Due Date'.
    Line 11 has 1 word, and text: 'Charges'.
    Line 12 has 2 words, and text: 'VAT ID'.
    Line 13 has 1 word, and text: '34278587'.
    Line 14 has 1 word, and text: '6/18/2017'.
    Line 15 has 1 word, and text: '6/24/2017'.
    Line 16 has 1 word, and text: '$56,651.49'.
    Line 17 has 1 word, and text: 'PT'.
Table 0 has 2 rows and 6 columns.
    Cell (0, 0) contains text: 'Invoice Number'.
    Cell (0, 1) contains text: 'Invoice Date'.
    Cell (0, 2) contains text: 'Invoice Due Date'.
    Cell (0, 3) contains text: 'Charges'.
    Cell (0, 5) contains text: 'VAT ID'.
    Cell (1, 0) contains text: '34278587'.
    Cell (1, 1) contains text: '6/18/2017'.
    Cell (1, 2) contains text: '6/24/2017'.
    Cell (1, 3) contains text: '$56,651.49'.
    Cell (1, 5) contains text: 'PT'.

分析收據

本節示範如何使用預先定型的收據模型,分析並擷取美國收據中的常見欄位。 如需收據分析的詳細資訊,請參閱文件智慧服務收據模型

若要從 URL 分析收據,請使用 StartRecognizeReceiptsFromUri 方法。

private static async Task AnalyzeReceipt(
    FormRecognizerClient recognizerClient, string receiptUri)
{
    RecognizedFormCollection receipts = await recognizerClient.StartRecognizeReceiptsFromUri(new Uri(receiptUrl)).WaitForCompletionAsync();

提示

您也可以分析本機收據影像。 請參閱 FormRecognizerClient 方法,例如 StartRecognizeReceipts。 或者,如需本機映像的相關案例,請參閱 GitHub 上的範例程式碼。

傳回的值是 RecognizedForm 物件的集合。 提交的文件中每個頁面都有一個物件。 下列程式碼會處理位於指定 URI 的收據,並將主要欄位和值列印至主控台。

    foreach (RecognizedForm receipt in receipts)
    {
        FormField merchantNameField;
        if (receipt.Fields.TryGetValue("MerchantName", out merchantNameField))
        {
            if (merchantNameField.Value.ValueType == FieldValueType.String)
            {
                string merchantName = merchantNameField.Value.AsString();

                Console.WriteLine($"Merchant Name: '{merchantName}', with confidence {merchantNameField.Confidence}");
            }
        }

        FormField transactionDateField;
        if (receipt.Fields.TryGetValue("TransactionDate", out transactionDateField))
        {
            if (transactionDateField.Value.ValueType == FieldValueType.Date)
            {
                DateTime transactionDate = transactionDateField.Value.AsDate();

                Console.WriteLine($"Transaction Date: '{transactionDate}', with confidence {transactionDateField.Confidence}");
            }
        }

        FormField itemsField;
        if (receipt.Fields.TryGetValue("Items", out itemsField))
        {
            if (itemsField.Value.ValueType == FieldValueType.List)
            {
                foreach (FormField itemField in itemsField.Value.AsList())
                {
                    Console.WriteLine("Item:");

                    if (itemField.Value.ValueType == FieldValueType.Dictionary)
                    {
                        IReadOnlyDictionary<string, FormField> itemFields = itemField.Value.AsDictionary();

                        FormField itemNameField;
                        if (itemFields.TryGetValue("Name", out itemNameField))
                        {
                            if (itemNameField.Value.ValueType == FieldValueType.String)
                            {
                                string itemName = itemNameField.Value.AsString();

                                Console.WriteLine($"    Name: '{itemName}', with confidence {itemNameField.Confidence}");
                            }
                        }

                        FormField itemTotalPriceField;
                        if (itemFields.TryGetValue("TotalPrice", out itemTotalPriceField))
                        {
                            if (itemTotalPriceField.Value.ValueType == FieldValueType.Float)
                            {
                                float itemTotalPrice = itemTotalPriceField.Value.AsFloat();

                                Console.WriteLine($"    Total Price: '{itemTotalPrice}', with confidence {itemTotalPriceField.Confidence}");
                            }
                        }
                    }
                }
            }
        }
        FormField totalField;
        if (receipt.Fields.TryGetValue("Total", out totalField))
        {
            if (totalField.Value.ValueType == FieldValueType.Float)
            {
                float total = totalField.Value.AsFloat();

                Console.WriteLine($"Total: '{total}', with confidence '{totalField.Confidence}'");
            }
        }
    }
}

結果看起來如下輸出。

Form Page 1 has 18 lines.
    Line 0 has 1 word, and text: 'Contoso'.
    Line 1 has 1 word, and text: 'Address:'.
    Line 2 has 3 words, and text: 'Invoice For: Microsoft'.
    Line 3 has 4 words, and text: '1 Redmond way Suite'.
    Line 4 has 3 words, and text: '1020 Enterprise Way'.
    Line 5 has 3 words, and text: '6000 Redmond, WA'.
    Line 6 has 3 words, and text: 'Sunnayvale, CA 87659'.
    Line 7 has 1 word, and text: '99243'.
    Line 8 has 2 words, and text: 'Invoice Number'.
    Line 9 has 2 words, and text: 'Invoice Date'.
    Line 10 has 3 words, and text: 'Invoice Due Date'.
    Line 11 has 1 word, and text: 'Charges'.
    Line 12 has 2 words, and text: 'VAT ID'.
    Line 13 has 1 word, and text: '34278587'.
    Line 14 has 1 word, and text: '6/18/2017'.
    Line 15 has 1 word, and text: '6/24/2017'.
    Line 16 has 1 word, and text: '$56,651.49'.
    Line 17 has 1 word, and text: 'PT'.
Table 0 has 2 rows and 6 columns.
    Cell (0, 0) contains text: 'Invoice Number'.
    Cell (0, 1) contains text: 'Invoice Date'.
    Cell (0, 2) contains text: 'Invoice Due Date'.
    Cell (0, 3) contains text: 'Charges'.
    Cell (0, 5) contains text: 'VAT ID'.
    Cell (1, 0) contains text: '34278587'.
    Cell (1, 1) contains text: '6/18/2017'.
    Cell (1, 2) contains text: '6/24/2017'.
    Cell (1, 3) contains text: '$56,651.49'.
    Cell (1, 5) contains text: 'PT'.
Merchant Name: 'Contoso Contoso', with confidence 0.516
Transaction Date: '6/10/2019 12:00:00 AM', with confidence 0.985
Item:
    Name: '8GB RAM (Black)', with confidence 0.916
    Total Price: '999', with confidence 0.559
Item:
    Name: 'SurfacePen', with confidence 0.858
    Total Price: '99.99', with confidence 0.386
Total: '1203.39', with confidence '0.774'

分析名片

本節示範如何使用預先定型的模型,分析和擷取英文名片中的常見欄位。 如需名片分析的詳細資訊,請參閱文件智慧服務名片模型

若要從 URL 分析名片,請使用 StartRecognizeBusinessCardsFromUriAsync 方法。

private static async Task AnalyzeBusinessCard(
FormRecognizerClient recognizerClient, string bcUrl) {
  RecognizedFormCollection businessCards = await recognizerClient.StartRecognizeBusinessCardsFromUriAsync(bcUrl).WaitForCompletionAsync();

提示

您也可以分析本機名片影像。 請參閱 FormRecognizerClient 方法,例如 StartRecognizeBusinessCards。 或者,如需本機映像的相關案例,請參閱 GitHub 上的範例程式碼。

下列程式碼會處理位於指定 URI 的名片,並將主要欄位和值列印至主控台。

  foreach(RecognizedForm businessCard in businessCards) {
    FormField ContactNamesField;
    if (businessCard.Fields.TryGetValue("ContactNames", out ContactNamesField)) {
      if (ContactNamesField.Value.ValueType == FieldValueType.List) {
        foreach(FormField contactNameField in ContactNamesField.Value.AsList()) {
          Console.WriteLine($ "Contact Name: {contactNameField.ValueData.Text}");

          if (contactNameField.Value.ValueType == FieldValueType.Dictionary) {
            IReadOnlyDictionary < string,
            FormField > contactNameFields = contactNameField.Value.AsDictionary();

            FormField firstNameField;
            if (contactNameFields.TryGetValue("FirstName", out firstNameField)) {
              if (firstNameField.Value.ValueType == FieldValueType.String) {
                string firstName = firstNameField.Value.AsString();

                Console.WriteLine($ "    First Name: '{firstName}', with confidence {firstNameField.Confidence}");
              }
            }

            FormField lastNameField;
            if (contactNameFields.TryGetValue("LastName", out lastNameField)) {
              if (lastNameField.Value.ValueType == FieldValueType.String) {
                string lastName = lastNameField.Value.AsString();

                Console.WriteLine($ "    Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
              }
            }
          }
        }
      }
    }

    FormField jobTitlesFields;
    if (businessCard.Fields.TryGetValue("JobTitles", out jobTitlesFields)) {
      if (jobTitlesFields.Value.ValueType == FieldValueType.List) {
        foreach(FormField jobTitleField in jobTitlesFields.Value.AsList()) {
          if (jobTitleField.Value.ValueType == FieldValueType.String) {
            string jobTitle = jobTitleField.Value.AsString();

            Console.WriteLine($ "  Job Title: '{jobTitle}', with confidence {jobTitleField.Confidence}");
          }
        }
      }
    }

    FormField departmentFields;
    if (businessCard.Fields.TryGetValue("Departments", out departmentFields)) {
      if (departmentFields.Value.ValueType == FieldValueType.List) {
        foreach(FormField departmentField in departmentFields.Value.AsList()) {
          if (departmentField.Value.ValueType == FieldValueType.String) {
            string department = departmentField.Value.AsString();

            Console.WriteLine($ "  Department: '{department}', with confidence {departmentField.Confidence}");
          }
        }
      }
    }

    FormField emailFields;
    if (businessCard.Fields.TryGetValue("Emails", out emailFields)) {
      if (emailFields.Value.ValueType == FieldValueType.List) {
        foreach(FormField emailField in emailFields.Value.AsList()) {
          if (emailField.Value.ValueType == FieldValueType.String) {
            string email = emailField.Value.AsString();

            Console.WriteLine($ "  Email: '{email}', with confidence {emailField.Confidence}");
          }
        }
      }
    }

    FormField websiteFields;
    if (businessCard.Fields.TryGetValue("Websites", out websiteFields)) {
      if (websiteFields.Value.ValueType == FieldValueType.List) {
        foreach(FormField websiteField in websiteFields.Value.AsList()) {
          if (websiteField.Value.ValueType == FieldValueType.String) {
            string website = websiteField.Value.AsString();

            Console.WriteLine($ "  Website: '{website}', with confidence {websiteField.Confidence}");
          }
        }
      }
    }

    FormField mobilePhonesFields;
    if (businessCard.Fields.TryGetValue("MobilePhones", out mobilePhonesFields)) {
      if (mobilePhonesFields.Value.ValueType == FieldValueType.List) {
        foreach(FormField mobilePhoneField in mobilePhonesFields.Value.AsList()) {
          if (mobilePhoneField.Value.ValueType == FieldValueType.PhoneNumber) {
            string mobilePhone = mobilePhoneField.Value.AsPhoneNumber();

            Console.WriteLine($ "  Mobile phone number: '{mobilePhone}', with confidence {mobilePhoneField.Confidence}");
          }
        }
      }
    }

    FormField otherPhonesFields;
    if (businessCard.Fields.TryGetValue("OtherPhones", out otherPhonesFields)) {
      if (otherPhonesFields.Value.ValueType == FieldValueType.List) {
        foreach(FormField otherPhoneField in otherPhonesFields.Value.AsList()) {
          if (otherPhoneField.Value.ValueType == FieldValueType.PhoneNumber) {
            string otherPhone = otherPhoneField.Value.AsPhoneNumber();

            Console.WriteLine($ "  Other phone number: '{otherPhone}', with confidence {otherPhoneField.Confidence}");
          }
        }
      }
    }

    FormField faxesFields;
    if (businessCard.Fields.TryGetValue("Faxes", out faxesFields)) {
      if (faxesFields.Value.ValueType == FieldValueType.List) {
        foreach(FormField faxField in faxesFields.Value.AsList()) {
          if (faxField.Value.ValueType == FieldValueType.PhoneNumber) {
            string fax = faxField.Value.AsPhoneNumber();

            Console.WriteLine($ "  Fax phone number: '{fax}', with confidence {faxField.Confidence}");
          }
        }
      }
    }

    FormField addressesFields;
    if (businessCard.Fields.TryGetValue("Addresses", out addressesFields)) {
      if (addressesFields.Value.ValueType == FieldValueType.List) {
        foreach(FormField addressField in addressesFields.Value.AsList()) {
          if (addressField.Value.ValueType == FieldValueType.String) {
            string address = addressField.Value.AsString();

            Console.WriteLine($ "  Address: '{address}', with confidence {addressField.Confidence}");
          }
        }
      }
    }

    FormField companyNamesFields;
    if (businessCard.Fields.TryGetValue("CompanyNames", out companyNamesFields)) {
      if (companyNamesFields.Value.ValueType == FieldValueType.List) {
        foreach(FormField companyNameField in companyNamesFields.Value.AsList()) {
          if (companyNameField.Value.ValueType == FieldValueType.String) {
            string companyName = companyNameField.Value.AsString();

            Console.WriteLine($ "  Company name: '{companyName}', with confidence {companyNameField.Confidence}");
          }
        }
      }
    }
  }
}

分析發票

本節示範如何使用預先定型的模型,分析和擷取銷售發票中的常見欄位。 如需發票分析的詳細資訊,請參閱文件智慧服務發票模型

若要從 URL 分析發票,請使用 StartRecognizeInvoicesFromUriAsync 方法。

private static async Task AnalyzeInvoice(
FormRecognizerClient recognizerClient, string invoiceUrl) {
  var options = new RecognizeInvoicesOptions() {
    Locale = "en-US"
  };
  RecognizedFormCollection invoices = await recognizerClient.StartRecognizeInvoicesFromUriAsync(invoiceUrl, options).WaitForCompletionAsync();

提示

您也可以分析本機發票影像。 請參閱 FormRecognizerClient 方法,例如 StartRecognizeInvoices。 或者,如需本機映像的相關案例,請參閱 GitHub 上的範例程式碼。

下列程式碼會處理位於指定 URI 的發票,並將主要欄位和值列印至主控台。

  RecognizedForm invoice = invoices.Single();

  FormField invoiceIdField;
  if (invoice.Fields.TryGetValue("InvoiceId", out invoiceIdField)) {
    if (invoiceIdField.Value.ValueType == FieldValueType.String) {
      string invoiceId = invoiceIdField.Value.AsString();
      Console.WriteLine($ "    Invoice Id: '{invoiceId}', with confidence {invoiceIdField.Confidence}");
    }
  }

  FormField invoiceDateField;
  if (invoice.Fields.TryGetValue("InvoiceDate", out invoiceDateField)) {
    if (invoiceDateField.Value.ValueType == FieldValueType.Date) {
      DateTime invoiceDate = invoiceDateField.Value.AsDate();
      Console.WriteLine($ "    Invoice Date: '{invoiceDate}', with confidence {invoiceDateField.Confidence}");
    }
  }

  FormField dueDateField;
  if (invoice.Fields.TryGetValue("DueDate", out dueDateField)) {
    if (dueDateField.Value.ValueType == FieldValueType.Date) {
      DateTime dueDate = dueDateField.Value.AsDate();
      Console.WriteLine($ "    Due Date: '{dueDate}', with confidence {dueDateField.Confidence}");
    }
  }

  FormField vendorNameField;
  if (invoice.Fields.TryGetValue("VendorName", out vendorNameField)) {
    if (vendorNameField.Value.ValueType == FieldValueType.String) {
      string vendorName = vendorNameField.Value.AsString();
      Console.WriteLine($ "    Vendor Name: '{vendorName}', with confidence {vendorNameField.Confidence}");
    }
  }

  FormField vendorAddressField;
  if (invoice.Fields.TryGetValue("VendorAddress", out vendorAddressField)) {
    if (vendorAddressField.Value.ValueType == FieldValueType.String) {
      string vendorAddress = vendorAddressField.Value.AsString();
      Console.WriteLine($ "    Vendor Address: '{vendorAddress}', with confidence {vendorAddressField.Confidence}");
    }
  }

  FormField customerNameField;
  if (invoice.Fields.TryGetValue("CustomerName", out customerNameField)) {
    if (customerNameField.Value.ValueType == FieldValueType.String) {
      string customerName = customerNameField.Value.AsString();
      Console.WriteLine($ "    Customer Name: '{customerName}', with confidence {customerNameField.Confidence}");
    }
  }

  FormField customerAddressField;
  if (invoice.Fields.TryGetValue("CustomerAddress", out customerAddressField)) {
    if (customerAddressField.Value.ValueType == FieldValueType.String) {
      string customerAddress = customerAddressField.Value.AsString();
      Console.WriteLine($ "    Customer Address: '{customerAddress}', with confidence {customerAddressField.Confidence}");
    }
  }

  FormField customerAddressRecipientField;
  if (invoice.Fields.TryGetValue("CustomerAddressRecipient", out customerAddressRecipientField)) {
    if (customerAddressRecipientField.Value.ValueType == FieldValueType.String) {
      string customerAddressRecipient = customerAddressRecipientField.Value.AsString();
      Console.WriteLine($ "    Customer address recipient: '{customerAddressRecipient}', with confidence {customerAddressRecipientField.Confidence}");
    }
  }

  FormField invoiceTotalField;
  if (invoice.Fields.TryGetValue("InvoiceTotal", out invoiceTotalField)) {
    if (invoiceTotalField.Value.ValueType == FieldValueType.Float) {
      float invoiceTotal = invoiceTotalField.Value.AsFloat();
      Console.WriteLine($ "    Invoice Total: '{invoiceTotal}', with confidence {invoiceTotalField.Confidence}");
    }
  }
}

分析身分證明文件

本節示範如何使用文件智慧服務預先建置的身分證明模型,分析並擷取政府發行的身分證明文件 (全球護照和美國駕照) 授權的重要資訊。 如需身分證明文件分析的詳細資訊,請參閱文件智慧服務身分證明文件模型

若要從 URI 分析身分證明文件,請使用 StartRecognizeIdentityDocumentsFromUriAsync 方法。

private static async Task AnalyzeId(
FormRecognizerClient recognizerClient, string idUrl) {
  RecognizedFormCollection identityDocument = await recognizerClient.StartRecognizeIdDocumentsFromUriAsync(idUrl).WaitForCompletionAsync();

提示

您也可以分析本機身分證明文件影像。 請參閱 FormRecognizerClient 方法,例如 StartRecognizeIdentityDocumentsAsync。 此外,如需本機影像的相關案例,請參閱 GitHub 上的範例程式碼。

下列程式碼會處理位於指定 URI 上的身分證明文件,並將主要欄位和值列印至主控台。

RecognizedForm identityDocument = identityDocuments.Single();

if (identityDocument.Fields.TryGetValue("Address", out FormField addressField)) {
  if (addressField.Value.ValueType == FieldValueType.String) {
    string address = addressField.Value.AsString();
    Console.WriteLine($ "Address: '{address}', with confidence {addressField.Confidence}");
  }
}

if (identityDocument.Fields.TryGetValue("CountryRegion", out FormField countryRegionField)) {
  if (countryRegionField.Value.ValueType == FieldValueType.CountryRegion) {
    string countryRegion = countryRegionField.Value.AsCountryRegion();
    Console.WriteLine($ "CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
  }
}

if (identityDocument.Fields.TryGetValue("DateOfBirth", out FormField dateOfBirthField)) {
  if (dateOfBirthField.Value.ValueType == FieldValueType.Date) {
    DateTime dateOfBirth = dateOfBirthField.Value.AsDate();
    Console.WriteLine($ "Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
  }
}

if (identityDocument.Fields.TryGetValue("DateOfExpiration", out FormField dateOfExpirationField)) {
  if (dateOfExpirationField.Value.ValueType == FieldValueType.Date) {
    DateTime dateOfExpiration = dateOfExpirationField.Value.AsDate();
    Console.WriteLine($ "Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
  }
}

if (identityDocument.Fields.TryGetValue("DocumentNumber", out FormField documentNumberField)) {
  if (documentNumberField.Value.ValueType == FieldValueType.String) {
    string documentNumber = documentNumberField.Value.AsString();
    Console.WriteLine($ "Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
  }
  RecognizedForm identityDocument = identityDocuments.Single();

  if (identityDocument.Fields.TryGetValue("Address", out FormField addressField)) {
    if (addressField.Value.ValueType == FieldValueType.String) {
      string address = addressField.Value.AsString();
      Console.WriteLine($ "Address: '{address}', with confidence {addressField.Confidence}");
    }
  }

  if (identityDocument.Fields.TryGetValue("CountryRegion", out FormField countryRegionField)) {
    if (countryRegionField.Value.ValueType == FieldValueType.CountryRegion) {
      string countryRegion = countryRegionField.Value.AsCountryRegion();
      Console.WriteLine($ "CountryRegion: '{countryRegion}', with confidence {countryRegionField.Confidence}");
    }
  }

  if (identityDocument.Fields.TryGetValue("DateOfBirth", out FormField dateOfBirthField)) {
    if (dateOfBirthField.Value.ValueType == FieldValueType.Date) {
      DateTime dateOfBirth = dateOfBirthField.Value.AsDate();
      Console.WriteLine($ "Date Of Birth: '{dateOfBirth}', with confidence {dateOfBirthField.Confidence}");
    }
  }

  if (identityDocument.Fields.TryGetValue("DateOfExpiration", out FormField dateOfExpirationField)) {
    if (dateOfExpirationField.Value.ValueType == FieldValueType.Date) {
      DateTime dateOfExpiration = dateOfExpirationField.Value.AsDate();
      Console.WriteLine($ "Date Of Expiration: '{dateOfExpiration}', with confidence {dateOfExpirationField.Confidence}");
    }
  }

  if (identityDocument.Fields.TryGetValue("DocumentNumber", out FormField documentNumberField)) {
    if (documentNumberField.Value.ValueType == FieldValueType.String) {
      string documentNumber = documentNumberField.Value.AsString();
      Console.WriteLine($ "Document Number: '{documentNumber}', with confidence {documentNumberField.Confidence}");
    }
  }

  if (identityDocument.Fields.TryGetValue("FirstName", out FormField firstNameField)) {
    if (firstNameField.Value.ValueType == FieldValueType.String) {
      string firstName = firstNameField.Value.AsString();
      Console.WriteLine($ "First Name: '{firstName}', with confidence {firstNameField.Confidence}");
    }
  }

  if (identityDocument.Fields.TryGetValue("LastName", out FormField lastNameField)) {
    if (lastNameField.Value.ValueType == FieldValueType.String) {
      string lastName = lastNameField.Value.AsString();
      Console.WriteLine($ "Last Name: '{lastName}', with confidence {lastNameField.Confidence}");
    }
  }

  if (identityDocument.Fields.TryGetValue("Region", out FormField regionfield)) {
    if (regionfield.Value.ValueType == FieldValueType.String) {
      string region = regionfield.Value.AsString();
      Console.WriteLine($ "Region: '{region}', with confidence {regionfield.Confidence}");
    }
  }

定型自訂模型

本節會示範如何使用自己的資料來訓練模型。 經過訓練的模型能夠輸出結構化資料,且其中包含原始文件內的索引鍵/值關聯。 定型模型後,您可以測試、重新定型模型,並最終根據您的需求使用此模型從更多表單中可靠地擷取資料。

注意

您也可以使用圖形化使用者介面 (例如文件智慧服務範例標記工具) 來定型模型。

訓練沒有標籤的模型

訓練自訂模型,以分析在自訂表單中找到的所有欄位和值,而不需要手動標記訓練文件。 下列方法會在指定文件集上訓練模型,並將模型的狀態列印至主控台。

private static async Task<String> TrainModel(
    FormTrainingClient trainingClient, string trainingDataUrl)
{
    CustomFormModel model = await trainingClient
    .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: false)
    .WaitForCompletionAsync();

    Console.WriteLine($"Custom Model Info:");
    Console.WriteLine($"    Model Id: {model.ModelId}");
    Console.WriteLine($"    Model Status: {model.Status}");
    Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
    Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");

傳回的 CustomFormModel 物件包含模型可分析的表單類型資訊,及其可從每個表單類型中擷取的欄位。 下列程式碼區塊會將此資訊列印至主控台。

foreach (CustomFormSubmodel submodel in model.Submodels)
{
    Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
    foreach (CustomFormModelField field in submodel.Fields.Values)
    {
        Console.Write($"    FieldName: {field.Name}");
        if (field.Label != null)
        {
            Console.Write($", FieldLabel: {field.Label}");
        }
        Console.WriteLine("");
    }
}

最後,傳回定型的模型識別碼,以便在稍後的步驟中使用。

    return model.ModelId;
}

此輸出會截斷以進行可讀性。

Merchant Name: 'Contoso Contoso', with confidence 0.516
Transaction Date: '6/10/2019 12:00:00 AM', with confidence 0.985
Item:
    Name: '8GB RAM (Black)', with confidence 0.916
    Total Price: '999', with confidence 0.559
Item:
    Name: 'SurfacePen', with confidence 0.858
    Total Price: '99.99', with confidence 0.386
Total: '1203.39', with confidence '0.774'
Form Page 1 has 18 lines.
    Line 0 has 1 word, and text: 'Contoso'.
    Line 1 has 1 word, and text: 'Address:'.
    Line 2 has 3 words, and text: 'Invoice For: Microsoft'.
    Line 3 has 4 words, and text: '1 Redmond way Suite'.
    Line 4 has 3 words, and text: '1020 Enterprise Way'.
    ...
Table 0 has 2 rows and 6 columns.
    Cell (0, 0) contains text: 'Invoice Number'.
    Cell (0, 1) contains text: 'Invoice Date'.
    Cell (0, 2) contains text: 'Invoice Due Date'.
    Cell (0, 3) contains text: 'Charges'.
    ...
Custom Model Info:
    Model Id: 95035721-f19d-40eb-8820-0c806b42798b
    Model Status: Ready
    Training model started on: 8/24/2020 6:36:44 PM +00:00
    Training model completed on: 8/24/2020 6:36:50 PM +00:00
Submodel Form Type: form-95035721-f19d-40eb-8820-0c806b42798b
    FieldName: CompanyAddress
    FieldName: CompanyName
    FieldName: CompanyPhoneNumber
    ...
Custom Model Info:
    Model Id: e7a1181b-1fb7-40be-bfbe-1ee154183633
    Model Status: Ready
    Training model started on: 8/24/2020 6:36:44 PM +00:00
    Training model completed on: 8/24/2020 6:36:52 PM +00:00
Submodel Form Type: form-0
    FieldName: field-0, FieldLabel: Additional Notes:
    FieldName: field-1, FieldLabel: Address:
    FieldName: field-2, FieldLabel: Company Name:
    FieldName: field-3, FieldLabel: Company Phone:
    FieldName: field-4, FieldLabel: Dated As:
    FieldName: field-5, FieldLabel: Details
    FieldName: field-6, FieldLabel: Email:
    FieldName: field-7, FieldLabel: Hero Limited
    FieldName: field-8, FieldLabel: Name:
    FieldName: field-9, FieldLabel: Phone:
    ...

訓練具備標籤的模型

您也可以手動標記訓練文件來訓練自訂模型。 在某些情況下,使用標籤來訓練會讓效能更佳。 若要使用標籤來訓練,您的 Blob 儲存體容器中除了訓練文件以外,還必須要有特殊的標籤資訊檔案 (<filename>.pdf.labels.json)。 文件智慧服務範例標籤工具提供可協助您建立這些標籤檔案的使用者介面。 取得這些檔案之後,即可呼叫 StartTrainingAsync 方法,並將 uselabels 參數設為 true

private static async Task<Guid> TrainModelWithLabelsAsync(
    FormRecognizerClient trainingClient, string trainingDataUrl)
{
    CustomFormModel model = await trainingClient
    .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels: true)
    .WaitForCompletionAsync();
    Console.WriteLine($"Custom Model Info:");
    Console.WriteLine($"    Model Id: {model.ModelId}");
    Console.WriteLine($"    Model Status: {model.Status}");
    Console.WriteLine($"    Training model started on: {model.TrainingStartedOn}");
    Console.WriteLine($"    Training model completed on: {model.TrainingCompletedOn}");

傳回的 CustomFormModel 會指出模型可擷取的欄位,及其在每個欄位中的預估正確性。 下列程式碼區塊會將此資訊列印至主控台。

    foreach (CustomFormSubmodel submodel in model.Submodels)
    {
        Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
        foreach (CustomFormModelField field in submodel.Fields.Values)
        {
            Console.Write($"    FieldName: {field.Name}");
            if (field.Label != null)
            {
                Console.Write($", FieldLabel: {field.Label}");
            }
            Console.WriteLine("");
        }
    }
    return model.ModelId;
}

此輸出會截斷以進行可讀性。

Form Page 1 has 18 lines.
    Line 0 has 1 word, and text: 'Contoso'.
    Line 1 has 1 word, and text: 'Address:'.
    Line 2 has 3 words, and text: 'Invoice For: Microsoft'.
    Line 3 has 4 words, and text: '1 Redmond way Suite'.
    Line 4 has 3 words, and text: '1020 Enterprise Way'.
    Line 5 has 3 words, and text: '6000 Redmond, WA'.
    ...
Table 0 has 2 rows and 6 columns.
    Cell (0, 0) contains text: 'Invoice Number'.
    Cell (0, 1) contains text: 'Invoice Date'.
    Cell (0, 2) contains text: 'Invoice Due Date'.
    ...
Merchant Name: 'Contoso Contoso', with confidence 0.516
Transaction Date: '6/10/2019 12:00:00 AM', with confidence 0.985
Item:
    Name: '8GB RAM (Black)', with confidence 0.916
    Total Price: '999', with confidence 0.559
Item:
    Name: 'SurfacePen', with confidence 0.858
    Total Price: '99.99', with confidence 0.386
Total: '1203.39', with confidence '0.774'
Custom Model Info:
    Model Id: 63c013e3-1cab-43eb-84b0-f4b20cb9214c
    Model Status: Ready
    Training model started on: 8/24/2020 6:42:54 PM +00:00
    Training model completed on: 8/24/2020 6:43:01 PM +00:00
Submodel Form Type: form-63c013e3-1cab-43eb-84b0-f4b20cb9214c
    FieldName: CompanyAddress
    FieldName: CompanyName
    FieldName: CompanyPhoneNumber
    FieldName: DatedAs
    FieldName: Email
    FieldName: Merchant
    ...

使用自訂模型分析表單

本節示範如何使用以自身表單訓練的模型,從您的自訂範本類型中擷取索引鍵/值資訊和其他內容。

重要

若要這樣做,您必須先訓練模型,才能將其識別碼傳遞至下列方法。

使用 StartRecognizeCustomFormsFromUri 方法。

// Analyze PDF form data
private static async Task AnalyzePdfForm(
    FormRecognizerClient recognizerClient, String modelId, string formUrl)
{
    RecognizedFormCollection forms = await recognizerClient
    .StartRecognizeCustomFormsFromUri(modelId, new Uri(formUrl))
    .WaitForCompletionAsync();

提示

您也可以分析本機檔案。 請參閱 FormRecognizerClient 方法,例如 StartRecognizeCustomForms。 或者,如需本機映像的相關案例,請參閱 GitHub 上的範例程式碼。

傳回的值是 RecognizedForm 物件的集合。 提交的文件中每個頁面都有一個物件。 下列程式碼會將分析結果列印至主控台。 列印內容包括辨識到的每個欄位和對應的值,以及信賴分數。

    foreach (RecognizedForm form in forms)
    {
        Console.WriteLine($"Form of type: {form.FormType}");
        foreach (FormField field in form.Fields.Values)
        {
            Console.WriteLine($"Field '{field.Name}: ");

            if (field.LabelData != null)
            {
                Console.WriteLine($"    Label: '{field.LabelData.Text}");
            }

            Console.WriteLine($"    Value: '{field.ValueData.Text}");
            Console.WriteLine($"    Confidence: '{field.Confidence}");
        }
        Console.WriteLine("Table data:");
        foreach (FormPage page in form.Pages)
        {
            for (int i = 0; i < page.Tables.Count; i++)
            {
                FormTable table = page.Tables[i];
                Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns.");
                foreach (FormTableCell cell in table.Cells)
                {
                    Console.WriteLine($"    Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'");
                }
            }
        }
    }
}

此輸出回應會因可讀性而截斷。

Custom Model Info:
    Model Id: 9b0108ee-65c8-450e-b527-bb309d054fc4
    Model Status: Ready
    Training model started on: 8/24/2020 7:00:31 PM +00:00
    Training model completed on: 8/24/2020 7:00:32 PM +00:00
Submodel Form Type: form-9b0108ee-65c8-450e-b527-bb309d054fc4
    FieldName: CompanyAddress
    FieldName: CompanyName
    FieldName: CompanyPhoneNumber
    ...
Form Page 1 has 18 lines.
    Line 0 has 1 word, and text: 'Contoso'.
    Line 1 has 1 word, and text: 'Address:'.
    Line 2 has 3 words, and text: 'Invoice For: Microsoft'.
    Line 3 has 4 words, and text: '1 Redmond way Suite'.
    ...

Table 0 has 2 rows and 6 columns.
    Cell (0, 0) contains text: 'Invoice Number'.
    Cell (0, 1) contains text: 'Invoice Date'.
    Cell (0, 2) contains text: 'Invoice Due Date'.
    ...
Merchant Name: 'Contoso Contoso', with confidence 0.516
Transaction Date: '6/10/2019 12:00:00 AM', with confidence 0.985
Item:
    Name: '8GB RAM (Black)', with confidence 0.916
    Total Price: '999', with confidence 0.559
Item:
    Name: 'SurfacePen', with confidence 0.858
    Total Price: '99.99', with confidence 0.386
Total: '1203.39', with confidence '0.774'
Custom Model Info:
    Model Id: dc115156-ce0e-4202-bbe4-7426e7bee756
    Model Status: Ready
    Training model started on: 8/24/2020 7:00:31 PM +00:00
    Training model completed on: 8/24/2020 7:00:41 PM +00:00
Submodel Form Type: form-0
    FieldName: field-0, FieldLabel: Additional Notes:
    FieldName: field-1, FieldLabel: Address:
    FieldName: field-2, FieldLabel: Company Name:
    FieldName: field-3, FieldLabel: Company Phone:
    FieldName: field-4, FieldLabel: Dated As:
    ...
Form of type: custom:form
Field 'Azure.AI.FormRecognizer.Models.FieldValue:
    Value: '$56,651.49
    Confidence: '0.249
Field 'Azure.AI.FormRecognizer.Models.FieldValue:
    Value: 'PT
    Confidence: '0.245
Field 'Azure.AI.FormRecognizer.Models.FieldValue:
    Value: '99243
    Confidence: '0.114
   ...

管理自訂模型

本節示範如何管理您的帳戶中儲存的自訂模型。 您要在下列方法內完成多項作業:

private static async Task ManageModels(
    FormTrainingClient trainingClient, string trainingFileUrl)
{

檢查 FormRecognizer 資源帳戶中的模型數

下列程式碼區塊會檢查您已在文件智慧服務帳戶中儲存的模型數,並比對帳戶限制。

// Check number of models in the FormRecognizer account, 
// and the maximum number of models that can be stored.
AccountProperties accountProperties = trainingClient.GetAccountProperties();
Console.WriteLine($"Account has {accountProperties.CustomModelCount} models.");
Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models.");

輸出

Account has 20 models.
It can have at most 5000 models.

列出目前儲存於資源帳戶中的模型

下列程式碼區塊會列出您帳戶中目前的模型,並將其詳細資料列印至主控台。

Pageable<CustomFormModelInfo> models = trainingClient.GetCustomModels();

foreach (CustomFormModelInfo modelInfo in models)
{
    Console.WriteLine($"Custom Model Info:");
    Console.WriteLine($"    Model Id: {modelInfo.ModelId}");
    Console.WriteLine($"    Model Status: {modelInfo.Status}");
    Console.WriteLine($"    Training model started on: {modelInfo.TrainingStartedOn}");
    Console.WriteLine($"    Training model completed on: {modelInfo.TrainingCompletedOn}");
}

此輸出會截斷以進行可讀性。

Custom Model Info:
    Model Id: 05932d5a-a2f8-4030-a2ef-4e5ed7112515
    Model Status: Creating
    Training model started on: 8/24/2020 7:35:02 PM +00:00
    Training model completed on: 8/24/2020 7:35:02 PM +00:00
Custom Model Info:
    Model Id: 150828c4-2eb2-487e-a728-60d5d504bd16
    Model Status: Ready
    Training model started on: 8/24/2020 7:33:25 PM +00:00
    Training model completed on: 8/24/2020 7:33:27 PM +00:00
Custom Model Info:
    Model Id: 3303e9de-6cec-4dfb-9e68-36510a6ecbb2
    Model Status: Ready
    Training model started on: 8/24/2020 7:29:27 PM +00:00
    Training model completed on: 8/24/2020 7:29:36 PM +00:00

使用模型的識別碼來取得特定模型

下列程式碼區塊會訓練新的模型 (如訓練沒有標籤的模型中所述),然後使用其識別碼來擷取第二個參考。

// Create a new model to store in the account
CustomFormModel model = await trainingClient.StartTrainingAsync(
    new Uri(trainingFileUrl)).WaitForCompletionAsync();

// Get the model that was just created
CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId);

Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:");

foreach (CustomFormSubmodel submodel in modelCopy.Submodels)
{
    Console.WriteLine($"Submodel Form Type: {submodel.FormType}");
    foreach (CustomFormModelField field in submodel.Fields.Values)
    {
        Console.Write($"    FieldName: {field.Name}");
        if (field.Label != null)
        {
            Console.Write($", FieldLabel: {field.Label}");
        }
        Console.WriteLine("");
    }
}

此輸出會截斷以進行可讀性。

Custom Model Info:
    Model Id: 150828c4-2eb2-487e-a728-60d5d504bd16
    Model Status: Ready
    Training model started on: 8/24/2020 7:33:25 PM +00:00
    Training model completed on: 8/24/2020 7:33:27 PM +00:00
Submodel Form Type: form-150828c4-2eb2-487e-a728-60d5d504bd16
    FieldName: CompanyAddress
    FieldName: CompanyName
    FieldName: CompanyPhoneNumber
    FieldName: DatedAs
    FieldName: Email
    FieldName: Merchant
    FieldName: PhoneNumber
    FieldName: PurchaseOrderNumber
    FieldName: Quantity
    FieldName: Signature
    FieldName: Subtotal
    FieldName: Tax
    FieldName: Total
    FieldName: VendorName
    FieldName: Website
...

從資源帳戶中刪除模型

您也可以參考模型的識別碼,從帳戶中將其刪除。 此步驟也會關閉方法。

    // Delete the model from the account.
    trainingClient.DeleteModel(model.ModelId);
}

執行應用程式

使用 dotnet run 命令從您的應用程式目錄執行應用程式。

dotnet run

清除資源

如果您想要清除和移除 Azure AI 服務訂用帳戶,則可以刪除資源或資源群組。 刪除資源群組也會刪除與其相關聯的任何其他資源。

疑難排解

使用 .NET SDK 與 Azure AI 文件智慧服務用戶端程式庫互動時,該服務所傳回的錯誤會導致 RequestFailedException。 這些錯誤會包含 REST API 要求可能傳回的相同 HTTP 狀態碼。

例如,如果您提交 URI 無效的收據影像,就會傳回 400 錯誤,指出「錯誤的要求」

try
{
    RecognizedReceiptCollection receipts = await client.StartRecognizeReceiptsFromUri(new Uri(receiptUri)).WaitForCompletionAsync();
}
catch (RequestFailedException e)
{
    Console.WriteLine(e.ToString());
}

您發現系統記錄了額外資訊,例如作業的用戶端要求識別碼。


Message:
    Azure.RequestFailedException: Service request failed.
    Status: 400 (Bad Request)

Content:
    {"error":{"code":"FailedToDownloadImage","innerError":
    {"requestId":"8ca04feb-86db-4552-857c-fde903251518"},
    "message":"Failed to download image from input URL."}}

Headers:
    Transfer-Encoding: chunked
    x-envoy-upstream-service-time: REDACTED
    apim-request-id: REDACTED
    Strict-Transport-Security: REDACTED
    X-Content-Type-Options: REDACTED
    Date: Mon, 20 Apr 2020 22:48:35 GMT
    Content-Type: application/json; charset=utf-8

下一步

針對此專案,您使用了文件智慧服務的 .NET 用戶端程式庫,以不同方式來定型模型和分析表單。 接下來,您將了解建立更好的訓練資料集有何秘訣,然後產生更精確的模型。

重要

此專案是針對文件智慧服務 REST API 版本 2.1。

參考文件 | 程式庫來源程式碼 | 套件 (Maven) | 範例

必要條件

  • Azure 訂用帳戶 - 建立免費帳戶

  • 最新版的 Java Development Kit (JDK)

  • Gradle 建置工具,或其他相依性管理員。

  • 文件智慧資源。 您可以使用免費定價層 (F0) 來試用服務,之後可升級至付費層以用於實際執行環境。

  • 從您所建立資源的金鑰和端點,將應用程式連線至 Azure 文件智慧服務。

    1. 部署資源之後,請選取 [移至資源]
    2. 在左側導覽功能表中,選取 [金鑰和端點]。
    3. 複製其中一個金鑰和 [端點],以供稍後在本文中使用。

    Azure 入口網站中金鑰與端點位置的螢幕擷取畫面。

  • 包含一組訓練資料的 Azure 儲存體 Blob。 請參閱建置和定型自訂模型,以獲得如何將訓練資料集放在一起的祕訣和選項。 在本專案中,您可以使用範例資料集Train 資料夾中的檔案。 下載 sample_data .zip並將其解壓縮。

設定程式設計環境

若要設定程式設計環境,請建立 Gradle 專案並安裝用戶端程式庫。

建立新的 Gradle 專案

在主控台視窗中,為您的應用程式建立目錄,並瀏覽至該目錄。

mkdir myapp
cd myapp

從您的工作目錄執行 gradle init 命令。 此命令會建立 Gradle 的基本組建檔案,包括 build.gradle.kts,將在執行階段使用 build.gradle.kts,來建立及設定應用程式。

gradle init --type basic

出現選擇 DSL 的提示時,請選取 [Kotlin]。

安裝用戶端程式庫

此專案會使用 Gradle 相依性管理員。 您可以在 Maven 中央存放庫中找到用戶端程式庫和其他相依性管理員的資訊。

在專案的 build.gradle.kts 檔案中,將用戶端程式庫納入為 implementation 陳述式,以及必要的外掛程式和設定。

plugins {
    java
    application
}
application {
    mainClass.set("FormRecognizer")
}
repositories {
    mavenCentral()
}
dependencies {
    implementation(group = "com.azure", name = "azure-ai-formrecognizer", version = "3.1.1")
}

建立 Java 檔案

從工作目錄執行下列命令:

mkdir -p src/main/java

瀏覽至新的資料夾,並建立名為 FormRecognizer.java 的檔案。 在編輯器或 IDE 中開啟該檔案,並新增下列 import 陳述式:

import com.azure.ai.formrecognizer.*;
import com.azure.ai.formrecognizer.training.*;
import com.azure.ai.formrecognizer.models.*;
import com.azure.ai.formrecognizer.training.models.*;

import java.util.concurrent.atomic.AtomicReference;
import java.util.List;
import java.util.Map;
import java.time.LocalDate;

import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;

在應用程式的 FormRecognizer 類別中,為資源的金鑰和端點建立變數。

static final String key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
static final String endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";

重要

前往 Azure 入口網站。 如果已成功部署您在 [必要條件] 區段中所建立的文件智慧服務資源,請在 [後續步驟] 下選取 [前往資源]。 您可以在 [金鑰和端點] 底下的 [資源管理] 中找到您的金鑰和端點。

切記,完成時請從程式碼中移除金鑰。 切勿公開發佈金鑰。 針對實際執行環境,請使用安全的方法來儲存和存取您的認證。 如需詳細資訊,請參閱 Azure AI 服務安全性

在應用程式的 main 方法中,針對此專案中使用的方法新增呼叫。 您會在稍後定義這些呼叫。 您也需要為訓練和測試資料新增 URL 的參考。

  1. 若要擷取自訂模型訓練資料的 SAS URL,請移至 Azure 入口網站中的儲存體資源,然後選取 [資料儲存]>[容器]

  2. 瀏覽至您的容器,以滑鼠右鍵按一下,然後選取 [產生 SAS]

    取得您容器的 SAS,而不是儲存體帳戶本身的 SAS。

  3. 確定 [讀取]、[寫入]、[刪除] 和 [列出] 權限均已選取,然後選取 [產生 SAS 權杖和 URL]

  4. 將 [URL] 區段中的值複製到暫存位置。 其格式應該為:https://<storage account>.blob.core.windows.net/<container name>?<SAS value>

若要取得要測試的表單 URL,您可以使用上述步驟來取得 Blob 儲存體中個別文件的 SAS URL。 或使用位於他處的文件 URL。

也請使用上述方法取得收據影像的 URL。

String trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE";
String formUrl = "PASTE_YOUR_FORM_RECOGNIZER_FORM_URL_HERE";
String receiptUrl = "https://docs.microsoft.com/azure/cognitive-services/form-recognizer/media" + "/contoso-allinone.jpg";
String bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg";
String invoiceUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/forms/Invoice_1.pdf";
String idUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg"
// Call Form Recognizer scenarios:
System.out.println("Get form content...");
GetContent(recognizerClient, formUrl);

System.out.println("Analyze receipt...");
AnalyzeReceipt(recognizerClient, receiptUrl);

System.out.println("Analyze business card...");
AnalyzeBusinessCard(recognizerClient, bcUrl);

System.out.println("Analyze invoice...");
AnalyzeInvoice(recognizerClient, invoiceUrl);

System.out.println("Analyze id...");
AnalyzeId(recognizerClient, idUrl);

System.out.println("Train Model with training data...");
String modelId = TrainModel(trainingClient, trainingDataUrl);

System.out.println("Analyze PDF form...");
AnalyzePdfForm(recognizerClient, modelId, formUrl);

System.out.println("Manage models...");
ManageModels(trainingClient, trainingDataUrl);

使用物件模型

透過文件智慧服務,您可以建立兩種不同的用戶端類型。 第一個是 FormRecognizerClient,會查詢服務,以辨識出表單欄位和內容。 第二個是 FormTrainingClient,會建立及管理自訂模型,以改善辨識效果。

FormRecognizerClient 提供下列工作的作業:

  • 使用已定型的自訂模型辨識表單欄位和內容,以分析自訂表單。 這些值會在 RecognizedForm 物件的集合中傳回。 請參閱分析自訂表單
  • 辨識表單內容,包括資料表、行和字組,無須定型模型。 表單內容會在 FormPage 物件的集合中傳回。 請參閱分析版面配置
  • 使用文件智慧服務服務上已預先定型的模型,辨識美國收據、名片、發票和身分證明文件中的常見欄位。

FormTrainingClient 會提供作業以:

  • 將自訂模型定型,以分析在自訂表單中找到的所有欄位和值。 傳回的 CustomFormModel 會指出模型用以分析的表單類型,以及其會針對每個表單類型來擷取的欄位。
  • 將自訂模型定型,藉由為自訂表單加上標籤來分析您指定的特定欄位和值。 傳回的 CustomFormModel 會指出模型會擷取的欄位,以及每個欄位的預估正確性。
  • 管理在您的帳戶中建立的模型。
  • 將自訂模型從一個文件智慧服務資源複製到另一個。

注意

您也可以使用圖形化使用者介面 (例如範例標記工具) 將模型定型。

驗證用戶端

main 方法的頂端,加入下列程式碼。 您要使用在上方定義的訂用帳戶變數來驗證兩個用戶端物件。 您使用 AzureKeyCredential 物件,這樣當您有需要時,不必建立新的用戶端物件就能更新金鑰。

FormRecognizerClient recognizerClient = new FormRecognizerClientBuilder()
        .credential(new AzureKeyCredential(key)).endpoint(endpoint).buildClient();

FormTrainingClient trainingClient = new FormTrainingClientBuilder().credential(new AzureKeyCredential(key))
        .endpoint(endpoint).buildClient();

分析版面配置

您可以使用文件智慧服務來分析文件中的資料表、行和字組,而不需要訓練模型。 如需版面配置擷取的詳細資訊,請參閱文件智慧服務版面配置模型

若要分析位於指定 URL 的檔案內容,請使用 beginRecognizeContentFromUrl 方法。

private static void GetContent(FormRecognizerClient recognizerClient, String invoiceUri) {
    String analyzeFilePath = invoiceUri;
    SyncPoller<FormRecognizerOperationResult, List<FormPage>> recognizeContentPoller = recognizerClient
            .beginRecognizeContentFromUrl(analyzeFilePath);

    List<FormPage> contentResult = recognizeContentPoller.getFinalResult();

提示

您也可以從本機檔案取得內容。 請參閱 FormRecognizerClient 方法,例如 beginRecognizeContent。 或者,如需本機映像的相關案例,請參閱 GitHub 上的範例程式碼。

傳回的值是 FormPage 物件的集合。 提交的文件中每個頁面都有一個物件。 下列程式碼會逐一查看這些物件,並列印擷取到的索引鍵/值組和資料表資料。

    contentResult.forEach(formPage -> {
        // Table information
        System.out.println("----Recognizing content ----");
        System.out.printf("Has width: %f and height: %f, measured with unit: %s.%n", formPage.getWidth(),
                formPage.getHeight(), formPage.getUnit());
        formPage.getTables().forEach(formTable -> {
            System.out.printf("Table has %d rows and %d columns.%n", formTable.getRowCount(),
                    formTable.getColumnCount());
            formTable.getCells().forEach(formTableCell -> {
                System.out.printf("Cell has text %s.%n", formTableCell.getText());
            });
            System.out.println();
        });
    });
}

結果看起來如下輸出。

Get form content...
----Recognizing content ----
Has width: 8.500000 and height: 11.000000, measured with unit: inch.
Table has 2 rows and 6 columns.
Cell has text Invoice Number.
Cell has text Invoice Date.
Cell has text Invoice Due Date.
Cell has text Charges.
Cell has text VAT ID.
Cell has text 458176.
Cell has text 3/28/2018.
Cell has text 4/16/2018.
Cell has text $89,024.34.
Cell has text ET.

分析收據

本節示範如何使用預先定型的收據模型,分析並擷取美國收據中的常見欄位。 如需收據分析的詳細資訊,請參閱文件智慧服務收據模型

若要從 URI 分析收據,請使用 beginRecognizeReceiptsFromUrl 方法。

private static void AnalyzeReceipt(FormRecognizerClient recognizerClient, String receiptUri) {
    SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> syncPoller = recognizerClient
            .beginRecognizeReceiptsFromUrl(receiptUri);
    List<RecognizedForm> receiptPageResults = syncPoller.getFinalResult();

提示

您也可以分析本機收據影像。 請參閱 FormRecognizerClient 方法,例如 beginRecognizeReceipts。 或者,如需本機映像的相關案例,請參閱 GitHub 上的範例程式碼。

傳回的值是 RecognizedReceipt 物件的集合。 提交的文件中每個頁面都有一個物件。 下一個程式碼區塊會逐一查看收據,並將其詳細資料列印至主控台。

for (int i = 0; i < receiptPageResults.size(); i++) {
    RecognizedForm recognizedForm = receiptPageResults.get(i);
    Map<String, FormField> recognizedFields = recognizedForm.getFields();
    System.out.printf("----------- Recognized Receipt page %d -----------%n", i);
    FormField merchantNameField = recognizedFields.get("MerchantName");
    if (merchantNameField != null) {
        if (FieldValueType.STRING == merchantNameField.getValue().getValueType()) {
            String merchantName = merchantNameField.getValue().asString();
            System.out.printf("Merchant Name: %s, confidence: %.2f%n", merchantName,
                    merchantNameField.getConfidence());
        }
    }
    FormField merchantAddressField = recognizedFields.get("MerchantAddress");
    if (merchantAddressField != null) {
        if (FieldValueType.STRING == merchantAddressField.getValue().getValueType()) {
            String merchantAddress = merchantAddressField.getValue().asString();
            System.out.printf("Merchant Address: %s, confidence: %.2f%n", merchantAddress,
                    merchantAddressField.getConfidence());
        }
    }
    FormField transactionDateField = recognizedFields.get("TransactionDate");
    if (transactionDateField != null) {
        if (FieldValueType.DATE == transactionDateField.getValue().getValueType()) {
            LocalDate transactionDate = transactionDateField.getValue().asDate();
            System.out.printf("Transaction Date: %s, confidence: %.2f%n", transactionDate,
                    transactionDateField.getConfidence());
        }
    }

下一個程式碼區塊會逐一查看在收據上偵測到的個別項目,並將其詳細資料列印至主控台。

        FormField receiptItemsField = recognizedFields.get("Items");
        if (receiptItemsField != null) {
            System.out.printf("Receipt Items: %n");
            if (FieldValueType.LIST == receiptItemsField.getValue().getValueType()) {
                List<FormField> receiptItems = receiptItemsField.getValue().asList();
                receiptItems.stream()
                        .filter(receiptItem -> FieldValueType.MAP == receiptItem.getValue().getValueType())
                        .map(formField -> formField.getValue().asMap())
                        .forEach(formFieldMap -> formFieldMap.forEach((key, formField) -> {
                            if ("Name".equals(key)) {
                                if (FieldValueType.STRING == formField.getValue().getValueType()) {
                                    String name = formField.getValue().asString();
                                    System.out.printf("Name: %s, confidence: %.2fs%n", name,
                                            formField.getConfidence());
                                }
                            }
                            if ("Quantity".equals(key)) {
                                if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                    Float quantity = formField.getValue().asFloat();
                                    System.out.printf("Quantity: %f, confidence: %.2f%n", quantity,
                                            formField.getConfidence());
                                }
                            }
                            if ("Price".equals(key)) {
                                if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                    Float price = formField.getValue().asFloat();
                                    System.out.printf("Price: %f, confidence: %.2f%n", price,
                                            formField.getConfidence());
                                }
                            }
                            if ("TotalPrice".equals(key)) {
                                if (FieldValueType.FLOAT == formField.getValue().getValueType()) {
                                    Float totalPrice = formField.getValue().asFloat();
                                    System.out.printf("Total Price: %f, confidence: %.2f%n", totalPrice,
                                            formField.getConfidence());
                                }
                            }
                        }));
            }
        }
    }
}

結果看起來如下輸出。

Analyze receipt...
----------- Recognized Receipt page 0 -----------
Merchant Name: Contoso Contoso, confidence: 0.62
Merchant Address: 123 Main Street Redmond, WA 98052, confidence: 0.99
Transaction Date: 2020-06-10, confidence: 0.90
Receipt Items:
Name: Cappuccino, confidence: 0.96s
Quantity: null, confidence: 0.957s]
Total Price: 2.200000, confidence: 0.95
Name: BACON & EGGS, confidence: 0.94s
Quantity: null, confidence: 0.927s]
Total Price: null, confidence: 0.93

分析名片

本節示範如何使用預先定型的模型,分析和擷取英文名片中的常見欄位。 如需名片分析的詳細資訊,請參閱文件智慧服務名片模型

若要從 URL 分析名片,請使用 beginRecognizeBusinessCardsFromUrl 方法。

private static void AnalyzeBusinessCard(FormRecognizerClient recognizerClient, String bcUrl) {
    SyncPoller < FormRecognizerOperationResult,
    List < RecognizedForm >> recognizeBusinessCardPoller = client.beginRecognizeBusinessCardsFromUrl(businessCardUrl);

    List < RecognizedForm > businessCardPageResults = recognizeBusinessCardPoller.getFinalResult();

提示

您也可以分析本機名片影像。 請參閱 FormRecognizerClient 方法,例如 beginRecognizeBusinessCards。 或者,如需本機映像的相關案例,請參閱 GitHub 上的範例程式碼。

傳回的值是 RecognizedForm 物件的集合。 文件中每個卡片都有一個物件。 下列程式碼會處理位於指定 URI 的名片,並將主要欄位和值列印至主控台。

    for (int i = 0; i < businessCardPageResults.size(); i++) {
        RecognizedForm recognizedForm = businessCardPageResults.get(i);
        Map < String,
        FormField > recognizedFields = recognizedForm.getFields();
        System.out.printf("----------- Recognized business card info for page %d -----------%n", i);
        FormField contactNamesFormField = recognizedFields.get("ContactNames");
        if (contactNamesFormField != null) {
            if (FieldValueType.LIST == contactNamesFormField.getValue().getValueType()) {
                List < FormField > contactNamesList = contactNamesFormField.getValue().asList();
                contactNamesList.stream().filter(contactName - >FieldValueType.MAP == contactName.getValue().getValueType()).map(contactName - >{
                    System.out.printf("Contact name: %s%n", contactName.getValueData().getText());
                    return contactName.getValue().asMap();
                }).forEach(contactNamesMap - >contactNamesMap.forEach((key, contactName) - >{
                    if ("FirstName".equals(key)) {
                        if (FieldValueType.STRING == contactName.getValue().getValueType()) {
                            String firstName = contactName.getValue().asString();
                            System.out.printf("\tFirst Name: %s, confidence: %.2f%n", firstName, contactName.getConfidence());
                        }
                    }
                    if ("LastName".equals(key)) {
                        if (FieldValueType.STRING == contactName.getValue().getValueType()) {
                            String lastName = contactName.getValue().asString();
                            System.out.printf("\tLast Name: %s, confidence: %.2f%n", lastName, contactName.getConfidence());
                        }
                    }
                }));
            }
        }

        FormField jobTitles = recognizedFields.get("JobTitles");
        if (jobTitles != null) {
            if (FieldValueType.LIST == jobTitles.getValue().getValueType()) {
                List < FormField > jobTitlesItems = jobTitles.getValue().asList();
                jobTitlesItems.stream().forEach(jobTitlesItem - >{
                    if (FieldValueType.STRING == jobTitlesItem.getValue().getValueType()) {
                        String jobTitle = jobTitlesItem.getValue().asString();
                        System.out.printf("Job Title: %s, confidence: %.2f%n", jobTitle, jobTitlesItem.getConfidence());
                    }
                });
            }
        }

        FormField departments = recognizedFields.get("Departments");
        if (departments != null) {
            if (FieldValueType.LIST == departments.getValue().getValueType()) {
                List < FormField > departmentsItems = departments.getValue().asList();
                departmentsItems.stream().forEach(departmentsItem - >{
                    if (FieldValueType.STRING == departmentsItem.getValue().getValueType()) {
                        String department = departmentsItem.getValue().asString();
                        System.out.printf("Department: %s, confidence: %.2f%n", department, departmentsItem.getConfidence());
                    }
                });
            }
        }

        FormField emails = recognizedFields.get("Emails");
        if (emails != null) {
            if (FieldValueType.LIST == emails.getValue().getValueType()) {
                List < FormField > emailsItems = emails.getValue().asList();
                emailsItems.stream().forEach(emailsItem - >{
                    if (FieldValueType.STRING == emailsItem.getValue().getValueType()) {
                        String email = emailsItem.getValue().asString();
                        System.out.printf("Email: %s, confidence: %.2f%n", email, emailsItem.getConfidence());
                    }
                });
            }
        }

        FormField websites = recognizedFields.get("Websites");
        if (websites != null) {
            if (FieldValueType.LIST == websites.getValue().getValueType()) {
                List < FormField > websitesItems = websites.getValue().asList();
                websitesItems.stream().forEach(websitesItem - >{
                    if (FieldValueType.STRING == websitesItem.getValue().getValueType()) {
                        String website = websitesItem.getValue().asString();
                        System.out.printf("Web site: %s, confidence: %.2f%n", website, websitesItem.getConfidence());
                    }
                });
            }
        }

        FormField mobilePhones = recognizedFields.get("MobilePhones");
        if (mobilePhones != null) {
            if (FieldValueType.LIST == mobilePhones.getValue().getValueType()) {
                List < FormField > mobilePhonesItems = mobilePhones.getValue().asList();
                mobilePhonesItems.stream().forEach(mobilePhonesItem - >{
                    if (FieldValueType.PHONE_NUMBER == mobilePhonesItem.getValue().getValueType()) {
                        String mobilePhoneNumber = mobilePhonesItem.getValue().asPhoneNumber();
                        System.out.printf("Mobile phone number: %s, confidence: %.2f%n", mobilePhoneNumber, mobilePhonesItem.getConfidence());
                    }
                });
            }
        }

        FormField otherPhones = recognizedFields.get("OtherPhones");
        if (otherPhones != null) {
            if (FieldValueType.LIST == otherPhones.getValue().getValueType()) {
                List < FormField > otherPhonesItems = otherPhones.getValue().asList();
                otherPhonesItems.stream().forEach(otherPhonesItem - >{
                    if (FieldValueType.PHONE_NUMBER == otherPhonesItem.getValue().getValueType()) {
                        String otherPhoneNumber = otherPhonesItem.getValue().asPhoneNumber();
                        System.out.printf("Other phone number: %s, confidence: %.2f%n", otherPhoneNumber, otherPhonesItem.getConfidence());
                    }
                });
            }
        }

        FormField faxes = recognizedFields.get("Faxes");
        if (faxes != null) {
            if (FieldValueType.LIST == faxes.getValue().getValueType()) {
                List < FormField > faxesItems = faxes.getValue().asList();
                faxesItems.stream().forEach(faxesItem - >{
                    if (FieldValueType.PHONE_NUMBER == faxesItem.getValue().getValueType()) {
                        String faxPhoneNumber = faxesItem.getValue().asPhoneNumber();
                        System.out.printf("Fax phone number: %s, confidence: %.2f%n", faxPhoneNumber, faxesItem.getConfidence());
                    }
                });
            }
        }

        FormField addresses = recognizedFields.get("Addresses");
        if (addresses != null) {
            if (FieldValueType.LIST == addresses.getValue().getValueType()) {
                List < FormField > addressesItems = addresses.getValue().asList();
                addressesItems.stream().forEach(addressesItem - >{
                    if (FieldValueType.STRING == addressesItem.getValue().getValueType()) {
                        String address = addressesItem.getValue().asString();
                        System.out.printf("Address: %s, confidence: %.2f%n", address, addressesItem.getConfidence());
                    }
                });
            }
        }

        FormField companyName = recognizedFields.get("CompanyNames");
        if (companyName != null) {
            if (FieldValueType.LIST == companyName.getValue().getValueType()) {
                List < FormField > companyNameItems = companyName.getValue().asList();
                companyNameItems.stream().forEach(companyNameItem - >{
                    if (FieldValueType.STRING == companyNameItem.getValue().getValueType()) {
                        String companyNameValue = companyNameItem.getValue().asString();
                        System.out.printf("Company name: %s, confidence: %.2f%n", companyNameValue, companyNameItem.getConfidence());
                    }
                });
            }
        }
    }
}

分析發票

本節示範如何使用預先定型的模型,分析和擷取銷售發票中的常見欄位。 如需發票分析的詳細資訊,請參閱文件智慧服務發票模型

若要從 URL 分析發票,請使用 beginRecognizeInvoicesFromUrl 方法。

private static void AnalyzeInvoice(FormRecognizerClient recognizerClient, String invoiceUrl) {
    SyncPoller < FormRecognizerOperationResult,
    List < RecognizedForm >> recognizeInvoicesPoller = client.beginRecognizeInvoicesFromUrl(invoiceUrl);

    List < RecognizedForm > recognizedInvoices = recognizeInvoicesPoller.getFinalResult();

提示

您也可以分析本機發票。 請參閱 FormRecognizerClient 方法,例如 beginRecognizeInvoices。 或者,如需本機映像的相關案例,請參閱 GitHub 上的範例程式碼。

傳回的值是 RecognizedForm 物件的集合。 文件中每個發票都有一個物件。 下列程式碼會處理位於指定 URI 的發票,並將主要欄位和值列印至主控台。

    for (int i = 0; i < recognizedInvoices.size(); i++) {
        RecognizedForm recognizedInvoice = recognizedInvoices.get(i);
        Map < String,
        FormField > recognizedFields = recognizedInvoice.getFields();
        System.out.printf("----------- Recognized invoice info for page %d -----------%n", i);
        FormField vendorNameField = recognizedFields.get("VendorName");
        if (vendorNameField != null) {
            if (FieldValueType.STRING == vendorNameField.getValue().getValueType()) {
                String merchantName = vendorNameField.getValue().asString();
                System.out.printf("Vendor Name: %s, confidence: %.2f%n", merchantName, vendorNameField.getConfidence());
            }
        }

        FormField vendorAddressField = recognizedFields.get("VendorAddress");
        if (vendorAddressField != null) {
            if (FieldValueType.STRING == vendorAddressField.getValue().getValueType()) {
                String merchantAddress = vendorAddressField.getValue().asString();
                System.out.printf("Vendor address: %s, confidence: %.2f%n", merchantAddress, vendorAddressField.getConfidence());
            }
        }

        FormField customerNameField = recognizedFields.get("CustomerName");
        if (customerNameField != null) {
            if (FieldValueType.STRING == customerNameField.getValue().getValueType()) {
                String merchantAddress = customerNameField.getValue().asString();
                System.out.printf("Customer Name: %s, confidence: %.2f%n", merchantAddress, customerNameField.getConfidence());
            }
        }

        FormField customerAddressRecipientField = recognizedFields.get("CustomerAddressRecipient");
        if (customerAddressRecipientField != null) {
            if (FieldValueType.STRING == customerAddressRecipientField.getValue().getValueType()) {
                String customerAddr = customerAddressRecipientField.getValue().asString();
                System.out.printf("Customer Address Recipient: %s, confidence: %.2f%n", customerAddr, customerAddressRecipientField.getConfidence());
            }
        }

        FormField invoiceIdField = recognizedFields.get("InvoiceId");
        if (invoiceIdField != null) {
            if (FieldValueType.STRING == invoiceIdField.getValue().getValueType()) {
                String invoiceId = invoiceIdField.getValue().asString();
                System.out.printf("Invoice Id: %s, confidence: %.2f%n", invoiceId, invoiceIdField.getConfidence());
            }
        }

        FormField invoiceDateField = recognizedFields.get("InvoiceDate");
        if (customerNameField != null) {
            if (FieldValueType.DATE == invoiceDateField.getValue().getValueType()) {
                LocalDate invoiceDate = invoiceDateField.getValue().asDate();
                System.out.printf("Invoice Date: %s, confidence: %.2f%n", invoiceDate, invoiceDateField.getConfidence());
            }
        }

        FormField invoiceTotalField = recognizedFields.get("InvoiceTotal");
        if (customerAddressRecipientField != null) {
            if (FieldValueType.FLOAT == invoiceTotalField.getValue().getValueType()) {
                Float invoiceTotal = invoiceTotalField.getValue().asFloat();
                System.out.printf("Invoice Total: %.2f, confidence: %.2f%n", invoiceTotal, invoiceTotalField.getConfidence());
            }
        }
    }
}

分析身分證明文件

本節示範如何使用文件智慧服務預先建置的身分證明模型,分析並擷取政府發行的身分證明文件 (全球護照和美國駕照) 授權的重要資訊。 如需身分證明文件分析的詳細資訊,請參閱文件智慧服務身分證明文件模型

若要從 URI 分析身分證明文件,請使用 beginRecognizeIdentityDocumentsFromUrl 方法。

private static void AnalyzeId(FormRecognizerClient client, String idUrl) {
    SyncPoller < FormRecognizerOperationResult,
    List < RecognizedForm >> analyzeIdentityDocumentPoller = client.beginRecognizeIdentityDocumentsFromUrl(licenseDocumentUrl);

    List < RecognizedForm > identityDocumentResults = analyzeIdentityDocumentPoller.getFinalResult();

提示

您也可以分析本機身分證明文件影像。 請參閱 FormRecognizerClient 方法,例如 beginRecognizeIdentityDocuments。 此外,如需本機影像的相關案例,請參閱 GitHub 上的範例程式碼。

下列程式碼會處理位於指定 URI 上的身分證明文件,並將主要欄位和值列印至主控台。

for (int i = 0; i < identityDocumentResults.size(); i++) {
    RecognizedForm recognizedForm = identityDocumentResults.get(i);
    Map < String,
    FormField > recognizedFields = recognizedForm.getFields();
    System.out.printf("----------- Recognized license info for page %d -----------%n", i);
    FormField addressField = recognizedFields.get("Address");
    if (addressField != null) {
        if (FieldValueType.STRING == addressField.getValue().getValueType()) {
            String address = addressField.getValue().asString();
            System.out.printf("Address: %s, confidence: %.2f%n", address, addressField.getConfidence());
        }
    }

    FormField countryRegionFormField = recognizedFields.get("CountryRegion");
    if (countryRegionFormField != null) {
        if (FieldValueType.STRING == countryRegionFormField.getValue().getValueType()) {
            String countryRegion = countryRegionFormField.getValue().asCountryRegion();
            System.out.printf("Country or region: %s, confidence: %.2f%n", countryRegion, countryRegionFormField.getConfidence());
        }
    }

    FormField dateOfBirthField = recognizedFields.get("DateOfBirth");
    if (dateOfBirthField != null) {
        if (FieldValueType.DATE == dateOfBirthField.getValue().getValueType()) {
            LocalDate dateOfBirth = dateOfBirthField.getValue().asDate();
            System.out.printf("Date of Birth: %s, confidence: %.2f%n", dateOfBirth, dateOfBirthField.getConfidence());
        }
    }

    FormField dateOfExpirationField = recognizedFields.get("DateOfExpiration");
    if (dateOfExpirationField != null) {
        if (FieldValueType.DATE == dateOfExpirationField.getValue().getValueType()) {
            LocalDate expirationDate = dateOfExpirationField.getValue().asDate();
            System.out.printf("Document date of expiration: %s, confidence: %.2f%n", expirationDate, dateOfExpirationField.getConfidence());
        }
    }

    FormField documentNumberField = recognizedFields.get("DocumentNumber");
    if (documentNumberField != null) {
        if (FieldValueType.STRING == documentNumberField.getValue().getValueType()) {
            String documentNumber = documentNumberField.getValue().asString();
            System.out.printf("Document number: %s, confidence: %.2f%n", documentNumber, documentNumberField.getConfidence());
        }
    }

    FormField firstNameField = recognizedFields.get("FirstName");
    if (firstNameField != null) {
        if (FieldValueType.STRING == firstNameField.getValue().getValueType()) {
            String firstName = firstNameField.getValue().asString();
            System.out.printf("First Name: %s, confidence: %.2f%n", firstName, documentNumberField.getConfidence());
        }
    }

    FormField lastNameField = recognizedFields.get("LastName");
    if (lastNameField != null) {
        if (FieldValueType.STRING == lastNameField.getValue().getValueType()) {
            String lastName = lastNameField.getValue().asString();
            System.out.printf("Last name: %s, confidence: %.2f%n", lastName, lastNameField.getConfidence());
        }
    }

    FormField regionField = recognizedFields.get("Region");
    if (regionField != null) {
        if (FieldValueType.STRING == regionField.getValue().getValueType()) {
            String region = regionField.getValue().asString();
            System.out.printf("Region: %s, confidence: %.2f%n", region, regionField.getConfidence());
        }
    }
}

定型自訂模型

本節會示範如何使用自己的資料來訓練模型。 經過訓練的模型能夠輸出結構化資料,且其中包含原始文件內的索引鍵/值關聯。 定型模型後,您可以測試、重新定型模型,並最終根據您的需求使用此模型從更多表單中可靠地擷取資料。

注意

您也可以使用圖形化使用者介面 (例如文件智慧服務範例標記工具) 來定型模型。

訓練沒有標籤的模型

訓練自訂模型,以分析在自訂表單中找到的所有欄位和值,而不需要手動標記訓練文件。

下列方法會在指定文件集上訓練模型,並將模型的狀態列印至主控台。

private static String TrainModel(FormTrainingClient trainingClient, String trainingDataUrl) {
    SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
            .beginTraining(trainingDataUrl, false);

    CustomFormModel customFormModel = trainingPoller.getFinalResult();

    // Model Info
    System.out.printf("Model Id: %s%n", customFormModel.getModelId());
    System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
    System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
    System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());

傳回的 CustomFormModel 物件包含模型可分析的表單類型資訊,及其可從每個表單類型中擷取的欄位。 下列程式碼區塊會將此資訊列印至主控台。

System.out.println("Recognized Fields:");
// looping through the subModels, which contains the fields they were trained on
// Since the given training documents are unlabeled, we still group them but
// they do not have a label.
customFormModel.getSubmodels().forEach(customFormSubmodel -> {
    // Since the training data is unlabeled, we are unable to return the accuracy of
    // this model
    System.out.printf("The subModel has form type %s%n", customFormSubmodel.getFormType());
    customFormSubmodel.getFields().forEach((field, customFormModelField) -> System.out
            .printf("The model found field '%s' with label: %s%n", field, customFormModelField.getLabel()));
});

最後,此方法會傳回模型的唯一識別碼。

    return customFormModel.getModelId();
}

結果看起來如下輸出。

Train Model with training data...
Model Id: 20c3544d-97b4-49d9-b39b-dc32d85f1358
Model Status: ready
Training started on: 2020-08-31T16:52:09Z
Training completed on: 2020-08-31T16:52:23Z

Recognized Fields:
The subModel has form type form-0
The model found field 'field-0' with label: Address:
The model found field 'field-1' with label: Charges
The model found field 'field-2' with label: Invoice Date
The model found field 'field-3' with label: Invoice Due Date
The model found field 'field-4' with label: Invoice For:
The model found field 'field-5' with label: Invoice Number
The model found field 'field-6' with label: VAT ID

訓練具備標籤的模型

您也可以手動標記訓練文件來訓練自訂模型。 在某些情況下,使用標籤來訓練會讓效能更佳。 若要使用標籤來訓練,您的 Blob 儲存體容器中除了訓練文件以外,還必須要有特殊的標籤資訊檔案 (<filename>.pdf.labels.json)。 文件智慧服務範例標籤工具提供可協助您建立這些標籤檔案的使用者介面。 取得這些檔案之後,即可呼叫 beginTraining 方法,並將 useTrainingLabels 參數設為 true

private static String TrainModelWithLabels(FormTrainingClient trainingClient, String trainingDataUrl) {
    // Train custom model
    String trainingSetSource = trainingDataUrl;
    SyncPoller<FormRecognizerOperationResult, CustomFormModel> trainingPoller = trainingClient
            .beginTraining(trainingSetSource, true);

    CustomFormModel customFormModel = trainingPoller.getFinalResult();

    // Model Info
    System.out.printf("Model Id: %s%n", customFormModel.getModelId());
    System.out.printf("Model Status: %s%n", customFormModel.getModelStatus());
    System.out.printf("Training started on: %s%n", customFormModel.getTrainingStartedOn());
    System.out.printf("Training completed on: %s%n%n", customFormModel.getTrainingCompletedOn());

傳回的 CustomFormModel 會指出模型可擷取的欄位,及其在每個欄位中的預估正確性。 下列程式碼區塊會將此資訊列印至主控台。

    // looping through the subModels, which contains the fields they were trained on
    // The labels are based on the ones you gave the training document.
    System.out.println("Recognized Fields:");
    // Since the data is labeled, we are able to return the accuracy of the model
    customFormModel.getSubmodels().forEach(customFormSubmodel -> {
        System.out.printf("The subModel with form type %s has accuracy: %.2f%n", customFormSubmodel.getFormType(),
                customFormSubmodel.getAccuracy());
        customFormSubmodel.getFields()
                .forEach((label, customFormModelField) -> System.out.printf(
                        "The model found field '%s' to have name: %s with an accuracy: %.2f%n", label,
                        customFormModelField.getName(), customFormModelField.getAccuracy()));
    });
    return customFormModel.getModelId();
}

結果看起來如下輸出。

Train Model with training data...
Model Id: 20c3544d-97b4-49d9-b39b-dc32d85f1358
Model Status: ready
Training started on: 2020-08-31T16:52:09Z
Training completed on: 2020-08-31T16:52:23Z

Recognized Fields:
The subModel has form type form-0
The model found field 'field-0' with label: Address:
The model found field 'field-1' with label: Charges
The model found field 'field-2' with label: Invoice Date
The model found field 'field-3' with label: Invoice Due Date
The model found field 'field-4' with label: Invoice For:
The model found field 'field-5' with label: Invoice Number
The model found field 'field-6' with label: VAT ID

使用自訂模型分析表單

本節示範如何使用以自身表單訓練的模型,從您的自訂範本類型中擷取索引鍵/值資訊和其他內容。

重要

若要這樣做,您必須先訓練模型,才能將其識別碼傳遞至方法作業。 請參閱訓練具備標籤的模型

使用 beginRecognizeCustomFormsFromUrl 方法。

// Analyze PDF form data
private static void AnalyzePdfForm(FormRecognizerClient formClient, String modelId, String pdfFormUrl) {
    SyncPoller<FormRecognizerOperationResult, List<RecognizedForm>> recognizeFormPoller = formClient
            .beginRecognizeCustomFormsFromUrl(modelId, pdfFormUrl);

    List<RecognizedForm> recognizedForms = recognizeFormPoller.getFinalResult();

提示

您也可以分析本機檔案。 請參閱 FormRecognizerClient 方法,例如 beginRecognizeCustomForms。 或者,如需本機映像的相關案例,請參閱 GitHub 上的範例程式碼。

傳回的值是 RecognizedForm 物件的集合。 提交的文件中每個頁面都有一個物件。 下列程式碼會將分析結果列印至主控台。 列印內容包括辨識到的每個欄位和對應的值,以及信賴分數。

    for (int i = 0; i < recognizedForms.size(); i++) {
        final RecognizedForm form = recognizedForms.get(i);
        System.out.printf("----------- Recognized custom form info for page %d -----------%n", i);
        System.out.printf("Form type: %s%n", form.getFormType());
        form.getFields().forEach((label, formField) ->
        // label data is populated if you are using a model trained with unlabeled data,
        // since the service needs to make predictions for labels if not explicitly
        // given to it.
        System.out.printf("Field '%s' has label '%s' with a confidence " + "score of %.2f.%n", label,
                formField.getLabelData().getText(), formField.getConfidence()));
    }
}

結果看起來如下輸出。

Analyze PDF form...
----------- Recognized custom template info for page 0 -----------
Form type: form-0
Field 'field-0' has label 'Address:' with a confidence score of 0.91.
Field 'field-1' has label 'Invoice For:' with a confidence score of 1.00.
Field 'field-2' has label 'Invoice Number' with a confidence score of 1.00.
Field 'field-3' has label 'Invoice Date' with a confidence score of 1.00.
Field 'field-4' has label 'Invoice Due Date' with a confidence score of 1.00.
Field 'field-5' has label 'Charges' with a confidence score of 1.00.
Field 'field-6' has label 'VAT ID' with a confidence score of 1.00.

管理自訂模型

本節示範如何管理您的帳戶中儲存的自訂模型。 下列程式碼範例會在單一方法中執行所有模型管理工作。 從複製下列方法簽章開始:

private static void ManageModels(FormTrainingClient trainingClient, String trainingFileUrl) {

檢查 FormRecognizer 資源帳戶中的模型數

下列程式碼區塊會檢查您已在文件智慧服務帳戶中儲存的模型數,並比對帳戶限制。

AtomicReference<String> modelId = new AtomicReference<>();

// First, we see how many custom models we have, and what our limit is
AccountProperties accountProperties = trainingClient.getAccountProperties();
System.out.printf("The account has %s custom models, and we can have at most %s custom models",
        accountProperties.getCustomModelCount(), accountProperties.getCustomModelLimit());

結果看起來如下輸出。

The account has 12 custom models, and we can have at most 250 custom models

列出目前儲存於資源帳戶中的模型

下列程式碼區塊會列出您帳戶中目前的模型,並將其詳細資料列印至主控台。

// Next, we get a paged list of all of our custom models
PagedIterable<CustomFormModelInfo> customModels = trainingClient.listCustomModels();
System.out.println("We have following models in the account:");
customModels.forEach(customFormModelInfo -> {
    System.out.printf("Model Id: %s%n", customFormModelInfo.getModelId());
    // get custom model info
    modelId.set(customFormModelInfo.getModelId());
    CustomFormModel customModel = trainingClient.getCustomModel(customFormModelInfo.getModelId());
    System.out.printf("Model Id: %s%n", customModel.getModelId());
    System.out.printf("Model Status: %s%n", customModel.getModelStatus());
    System.out.printf("Training started on: %s%n", customModel.getTrainingStartedOn());
    System.out.printf("Training completed on: %s%n", customModel.getTrainingCompletedOn());
    customModel.getSubmodels().forEach(customFormSubmodel -> {
        System.out.printf("Custom Model Form type: %s%n", customFormSubmodel.getFormType());
        System.out.printf("Custom Model Accuracy: %.2f%n", customFormSubmodel.getAccuracy());
        if (customFormSubmodel.getFields() != null) {
            customFormSubmodel.getFields().forEach((fieldText, customFormModelField) -> {
                System.out.printf("Field Text: %s%n", fieldText);
                System.out.printf("Field Accuracy: %.2f%n", customFormModelField.getAccuracy());
            });
        }
    });
});

結果看起來如下輸出。

為了方便閱讀,此回應已截斷。

We have following models in the account:
Model Id: 0b048b60-86cc-47ec-9782-ad0ffaf7a5ce
Model Id: 0b048b60-86cc-47ec-9782-ad0ffaf7a5ce
Model Status: ready
Training started on: 2020-06-04T18:33:08Z
Training completed on: 2020-06-04T18:33:10Z
Custom Model Form type: form-0b048b60-86cc-47ec-9782-ad0ffaf7a5ce
Custom Model Accuracy: 1.00
Field Text: invoice date
Field Accuracy: 1.00
Field Text: invoice number
Field Accuracy: 1.00
...

從資源帳戶中刪除模型

您也可以參考模型的識別碼,從帳戶中將其刪除。

    // Delete Custom Model
    System.out.printf("Deleted model with model Id: %s, operation completed with status: %s%n", modelId.get(),
            trainingClient.deleteModelWithResponse(modelId.get(), Context.NONE).getStatusCode());
}

執行應用程式

巡覽回到您的主要專案目錄。 然後,使用下列命令建置應用程式:

gradle build

使用 run 目標執行應用程式:

gradle run

清除資源

如果您想要清除和移除 Azure AI 服務訂用帳戶,則可以刪除資源或資源群組。 刪除資源群組也會刪除與其相關聯的任何其他資源。

疑難排解

文件智慧服務用戶端會引發 ErrorResponseException 例外狀況。 例如,如果您嘗試提供無效的檔案來源 URL,則會引發 ErrorResponseException 並出現指出失敗原因的錯誤。 下列程式碼片段會攔截例外狀況以適當處理錯誤,並顯示錯誤的其他相關資訊。

try {
    formRecognizerClient.beginRecognizeContentFromUrl("invalidSourceUrl");
} catch (ErrorResponseException e) {
    System.out.println(e.getMessage());
}

啟用用戶端記錄

適用於 Java 的 Azure SDK 會提供一致的記錄案例,來協助針對應用程式錯誤進行疑難排解,並加快解決速度。 產生的記錄會在到達終端狀態之前,先擷取應用程式流程來協助尋找根本問題。 如需啟用記錄的詳細資訊,請參閱記錄 Wiki

下一步

針對此專案,您使用了文件智慧服務的 Java 用戶端程式庫,以不同方式來定型模型和分析表單。 接下來,您將了解建立更好的訓練資料集有何秘訣,然後產生更精確的模型。

重要

此專案是針對文件智慧服務 REST API 版本 2.1。

參考文件 | 程式庫來源程式碼 | 套件 (npm) | 範例

必要條件

  • Azure 訂用帳戶 - 建立免費帳戶

  • 最新版的 Visual Studio Code

  • 最新 LTS 版的 Node.js

  • 包含一組訓練資料的 Azure 儲存體 Blob。 請參閱建置和定型自訂模型,以獲得如何將訓練資料集放在一起的祕訣和選項。 在本專案中,您可以使用範例資料集Train 資料夾底下的檔案。 下載 sample_data .zip並將其解壓縮。

  • Azure AI 服務或文件智慧服務資源。 建立文件智慧服務資源。 您可以使用免費定價層 (F0) 來試用服務,之後可升級至付費層以用於實際執行環境。

  • 從您所建立資源的金鑰和端點,將應用程式連線至 Azure 文件智慧服務。

    1. 部署資源之後,請選取 [移至資源]
    2. 在左側導覽功能表中,選取 [金鑰和端點]。
    3. 複製其中一個金鑰和 [端點],以供稍後在本文中使用。

    Azure 入口網站中金鑰與端點位置的螢幕擷取畫面。

設定程式設計環境

建立應用程式並安裝用戶端程式庫。

建立新的 Node.js 應用程式

  1. 在主控台視窗中,為您的應用程式建立目錄,並瀏覽至該目錄。

    mkdir myapp
    cd myapp
    
  2. 執行 npm init 命令以使用 package.json 檔案建立節點應用程式。

    npm init
    

安裝用戶端程式庫

  1. 安裝 ai-form-recognizer npm 套件:

    npm install @azure/ai-form-recognizer
    

    您應用程式的 package.json 檔案會隨著相依項目更新。

  2. 建立名為 index.js 的檔案,並匯入下列程式庫:

    const { FormRecognizerClient, FormTrainingClient, AzureKeyCredential } = require("@azure/ai-form-recognizer");
    const fs = require("fs");
    
  3. 為資源的 Azure 端點和金鑰建立變數。

    const apiKey = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE";
    const endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE";
    

重要

前往 Azure 入口網站。 如果已成功部署您在 [必要條件] 區段中所建立的文件智慧服務資源,請在 [後續步驟] 下選取 [前往資源]。 您可以在 [金鑰和端點] 底下的 [資源管理] 中找到您的金鑰和端點。

切記,完成時請從程式碼中移除金鑰。 切勿公開發佈金鑰。 針對實際執行環境,請使用安全的方法來儲存和存取您的認證。 如需詳細資訊,請參閱 Azure AI 服務安全性

使用物件模型

透過文件智慧服務,您可以建立兩種不同的用戶端類型。 第一個是 FormRecognizerClient,會查詢服務,以辨識出表單欄位和內容。 第二個是 FormTrainingClient,會建立及管理自訂模型,以改善辨識效果。

FormRecognizerClient 提供下列作業:

  • 使用已定型的自訂模型辨識表單欄位和內容,以分析自訂表單。 這些值會在 RecognizedForm 物件的集合中傳回。
  • 辨識表單內容,包括資料表、行和字組,無須定型模型。 表單內容會在 FormPage 物件的集合中傳回。
  • 使用文件智慧服務服務上已預先定型的模型,辨識美國收據、名片、發票和身分證明文件中的常見欄位。

FormTrainingClient 會提供作業以:

  • 將自訂模型定型,以分析在自訂表單中找到的所有欄位和值。 傳回的 CustomFormModel 會指出模型用以分析的表單類型,以及其會針對每個表單類型來擷取的欄位。 如需詳細資訊,請參閱有關未標示模型定型的服務文件
  • 將自訂模型定型,藉由為自訂表單加上標籤來分析您指定的特定欄位和值。 傳回的 CustomFormModel 會指出模型會擷取的欄位,以及每個欄位的預估正確性。 如需詳細資訊,請參閱本文中的訓練具備標籤的模型
  • 管理在您的帳戶中建立的模型。
  • 將自訂模型從一個文件智慧服務資源複製到另一個。

注意

您也可以使用圖形化使用者介面 (例如範例標記工具) 將模型定型。

驗證用戶端

使用您定義的訂用帳戶變數來驗證用戶端物件。 使用 AzureKeyCredential 物件,這樣當您有需要時,不必建立新的用戶端物件就能更新金鑰。 您也會建立訓練用戶端物件。

const trainingClient = new FormTrainingClient(endpoint, new AzureKeyCredential(apiKey));
const client = new FormRecognizerClient(endpoint, new AzureKeyCredential(apiKey));

取得用於測試的資產

您也需要為訓練和測試資料新增 URL 的參考。

  1. 若要擷取自訂模型訓練資料的 SAS URL,請移至 Azure 入口網站中的儲存體資源,然後選取 [資料儲存]>[容器]

  2. 瀏覽至您的容器,以滑鼠右鍵按一下,然後選取 [產生 SAS]

    取得您容器的 SAS,而不是儲存體帳戶本身的 SAS。

  3. 確定 [讀取]、[寫入]、[刪除] 和 [列出] 權限均已選取,然後選取 [產生 SAS 權杖和 URL]

  4. 將 [URL] 區段中的值複製到暫存位置。 其格式應該為:https://<storage account>.blob.core.windows.net/<container name>?<SAS value>

使用範例中包含的收據影像。 您也可以在 GitHub 上取得這這些影像。 您可以使用上述步驟來取得 Blob 儲存體中個別文件的 SAS URL。

分析版面配置

您可以使用文件智慧服務來分析文件中的資料表、行和字組,而不需要訓練模型。 如需版面配置擷取的詳細資訊,請參閱文件智慧服務版面配置模型。 若要分析位於指定 URI 的檔案內容,請使用 beginRecognizeContentFromUrl 方法。

async function recognizeContent() {
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";
    const poller = await client.beginRecognizeContentFromUrl(formUrl);
    const pages = await poller.pollUntilDone();

    if (!pages || pages.length === 0) {
        throw new Error("Expecting non-empty list of pages!");
    }

    for (const page of pages) {
        console.log(
            `Page ${page.pageNumber}: width ${page.width} and height ${page.height} with unit ${page.unit}`
        );
        for (const table of page.tables) {
            for (const cell of table.cells) {
                console.log(`cell [${cell.rowIndex},${cell.columnIndex}] has text ${cell.text}`);
            }
        }
    }
}

recognizeContent().catch((err) => {
    console.error("The sample encountered an error:", err);
});

提示

您也可以使用 FormRecognizerClient 方法從本機檔案取得內容,例如 beginRecognizeContent

Page 1: width 8.5 and height 11 with unit inch
cell [0,0] has text Invoice Number
cell [0,1] has text Invoice Date
cell [0,2] has text Invoice Due Date
cell [0,3] has text Charges
cell [0,5] has text VAT ID
cell [1,0] has text 34278587
cell [1,1] has text 6/18/2017
cell [1,2] has text 6/24/2017
cell [1,3] has text $56,651.49
cell [1,5] has text PT

分析收據

本節示範如何使用預先定型的收據模型,分析並擷取美國收據中的常見欄位。 如需收據分析的詳細資訊,請參閱文件智慧服務收據模型

若要從 URI 分析收據,請使用 beginRecognizeReceiptsFromUrl 方法。 下列程式碼會處理位於指定 URI 的收據,並將主要欄位和值列印至主控台。

async function recognizeReceipt() {
    receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png";
    const poller = await client.beginRecognizeReceiptsFromUrl(receiptUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });

    const receipts = await poller.pollUntilDone();

    if (!receipts || receipts.length <= 0) {
        throw new Error("Expecting at lease one receipt in analysis result");
    }

    const receipt = receipts[0];
    console.log("First receipt:");
    const receiptTypeField = receipt.fields["ReceiptType"];
    if (receiptTypeField.valueType === "string") {
        console.log(`  Receipt Type: '${receiptTypeField.value || "<missing>"}', with confidence of ${receiptTypeField.confidence}`);
    }
    const merchantNameField = receipt.fields["MerchantName"];
    if (merchantNameField.valueType === "string") {
        console.log(`  Merchant Name: '${merchantNameField.value || "<missing>"}', with confidence of ${merchantNameField.confidence}`);
    }
    const transactionDate = receipt.fields["TransactionDate"];
    if (transactionDate.valueType === "date") {
        console.log(`  Transaction Date: '${transactionDate.value || "<missing>"}', with confidence of ${transactionDate.confidence}`);
    }
    const itemsField = receipt.fields["Items"];
    if (itemsField.valueType === "array") {
        for (const itemField of itemsField.value || []) {
            if (itemField.valueType === "object") {
                const itemNameField = itemField.value["Name"];
                if (itemNameField.valueType === "string") {
                    console.log(`    Item Name: '${itemNameField.value || "<missing>"}', with confidence of ${itemNameField.confidence}`);
                }
            }
        }
    }
    const totalField = receipt.fields["Total"];
    if (totalField.valueType === "number") {
        console.log(`  Total: '${totalField.value || "<missing>"}', with confidence of ${totalField.confidence}`);
    }
}

recognizeReceipt().catch((err) => {
    console.error("The sample encountered an error:", err);
});

提示

您也可以使用 FormRecognizerClient 方法來分析本機收據影像,例如 beginRecognizeReceipts

status: notStarted
status: running
status: succeeded
First receipt:
  Receipt Type: 'Itemized', with confidence of 0.659
  Merchant Name: 'Contoso Contoso', with confidence of 0.516
  Transaction Date: 'Sun Jun 09 2019 17:00:00 GMT-0700 (Pacific Daylight Time)', with confidence of 0.985
    Item Name: '8GB RAM (Black)', with confidence of 0.916
    Item Name: 'SurfacePen', with confidence of 0.858
  Total: '1203.39', with confidence of 0.774

分析名片

本節示範如何使用預先定型的模型,分析和擷取英文名片中的常見欄位。 如需名片分析的詳細資訊,請參閱文件智慧服務名片模型

若要從 URL 分析名片,請使用 beginRecognizeBusinessCardsFromURL 方法。

async function recognizeBusinessCards() {
    bcUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/businessCard.png";
    const poller = await client.beginRecognizeBusinessCardsFromUrl(bcUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [businessCard] = await poller.pollUntilDone();

    if (businessCard === undefined) {
        throw new Error("Failed to extract data from at least one business card.");
    }

    const contactNames = businessCard.fields["ContactNames"].value;
    if (Array.isArray(contactNames)) {
        console.log("- Contact Names:");
        for (const contactName of contactNames) {
            if (contactName.valueType === "object") {
                const firstName = contactName.value?.["FirstName"].value ?? "<no first name>";
                const lastName = contactName.value?.["LastName"].value ?? "<no last name>";
                console.log(`  - ${firstName} ${lastName} (${contactName.confidence} confidence)`);
            }
        }
    }

    printSimpleArrayField(businessCard, "CompanyNames");
    printSimpleArrayField(businessCard, "Departments");
    printSimpleArrayField(businessCard, "JobTitles");
    printSimpleArrayField(businessCard, "Emails");
    printSimpleArrayField(businessCard, "Websites");
    printSimpleArrayField(businessCard, "Addresses");
    printSimpleArrayField(businessCard, "MobilePhones");
    printSimpleArrayField(businessCard, "Faxes");
    printSimpleArrayField(businessCard, "WorkPhones");
    printSimpleArrayField(businessCard, "OtherPhones");
}

// Helper function to print array field values. 
function printSimpleArrayField(businessCard, fieldName) {
    const fieldValues = businessCard.fields[fieldName]?.value;
    if (Array.isArray(fieldValues)) {
        console.log(`- ${fieldName}:`);
        for (const item of fieldValues) {
            console.log(`  - ${item.value ?? "<no value>"} (${item.confidence} confidence)`);
        }
    } else if (fieldValues === undefined) {
        console.log(`No ${fieldName} were found in the document.`);
    } else {
        console.error(
            `Error: expected field "${fieldName}" to be an Array, but it was a(n) ${businessCard.fields[fieldName].valueType}`
        );
    }
}

recognizeBusinessCards().catch((err) => {
    console.error("The sample encountered an error:", err);
});

提示

您也可以使用 FormRecognizerClient 方法來分析本機名片影像,例如 beginRecognizeBusinessCards

分析發票

本節示範如何使用預先定型的模型,分析和擷取銷售發票中的常見欄位。 如需發票分析的詳細資訊,請參閱文件智慧服務發票模型

若要從 URL 分析發票,請使用 beginRecognizeInvoicesFromUrl 方法。

async function recognizeInvoices() {
    invoiceUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/invoice_sample.jpg";

    const poller = await client.beginRecognizeInvoicesFromUrl(invoiceUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [invoice] = await poller.pollUntilDone();
    if (invoice === undefined) {
        throw new Error("Failed to extract data from at least one invoice.");
    }

    // Helper function to print fields.
    function fieldToString(field) {
        const {
            name,
            valueType,
            value,
            confidence
        } = field;
        return `${name} (${valueType}): '${value}' with confidence ${confidence}'`;
    }

    console.log("Invoice fields:");

    for (const [name, field] of Object.entries(invoice.fields)) {
        if (field.valueType !== "array" && field.valueType !== "object") {
            console.log(`- ${name} ${fieldToString(field)}`);
        }
    }

    let idx = 0;

    console.log("- Items:");

    const items = invoice.fields["Items"]?.value;
    for (const item of items ?? []) {
        const value = item.value;

        const subFields = [
            "Description",
            "Quantity",
            "Unit",
            "UnitPrice",
            "ProductCode",
            "Date",
            "Tax",
            "Amount"
        ]
            .map((fieldName) => value[fieldName])
            .filter((field) => field !== undefined);

        console.log(
            [
                `  - Item #${idx}`,
                // Now we will convert those fields into strings to display
                ...subFields.map((field) => `    - ${fieldToString(field)}`)
            ].join("\n")
        );
    }
}

recognizeInvoices().catch((err) => {
    console.error("The sample encountered an error:", err);
});

提示

您也可以使用 FormRecognizerClient 方法來分析本機收據影像,例如 beginRecognizeInvoices

分析身分證明文件

本節示範如何使用文件智慧服務預先建置的身分證明模型,分析並擷取政府發行的身分證明文件 (包括全球護照和美國駕照) 授權的重要資訊。 如需身分證明文件分析的詳細資訊,請參閱文件智慧服務身分證明文件模型

若要從 URL 分析身分證明文件,請使用 beginRecognizeIdDocumentsFromUrl 方法。

async function recognizeIdDocuments() {
    idUrl = "https://github.com/Azure-Samples/cognitive-services-REST-api-samples/curl/form-recognizer/id-license.jpg";
    const poller = await client.beginRecognizeIdDocumentsFromUrl(idUrl, {
        onProgress: (state) => {
            console.log(`status: ${state.status}`);
        }
    });

    const [idDocument] = await poller.pollUntilDone();

    if (idDocument === undefined) {
        throw new Error("Failed to extract data from at least one identity document.");
    }

    console.log("Document Type:", idDocument.formType);

    console.log("Identity Document Fields:");

    function printField(fieldName) {
        // Fields are extracted from the `fields` property of the document result
        const field = idDocument.fields[fieldName];
        console.log(
            `- ${fieldName} (${field?.valueType}): '${field?.value ?? "<missing>"}', with confidence ${field?.confidence
            }`
        );
    }

    printField("FirstName");
    printField("LastName");
    printField("DocumentNumber");
    printField("DateOfBirth");
    printField("DateOfExpiration");
    printField("Sex");
    printField("Address");
    printField("Country");
    printField("Region");
}

recognizeIdDocuments().catch((err) => {
    console.error("The sample encountered an error:", err);
});

定型自訂模型

本節會示範如何使用自己的資料來訓練模型。 經過訓練的模型能夠輸出結構化資料,且其中包含原始文件內的索引鍵/值關聯。 定型模型後,您可以測試、重新定型模型,並最終根據您的需求使用此模型從更多表單中可靠地擷取資料。

注意

您也可以使用圖形化使用者介面 (GUI) (例如文件智慧服務範例標記工具) 來定型模型。

訓練沒有標籤的模型

訓練自訂模型,以分析在自訂表單中找到的所有欄位和值,而不需要手動標記訓練文件。

下列函式會在指定文件集上訓練模型,並將模型的狀態列印至主控台。

async function trainModel() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, false, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModel().catch((err) => {
    console.error("The sample encountered an error:", err);
});

以下是使用可從 JavaScript SDK 取得的定型資料所定型模型的輸出。 為了方便閱讀,此範例結果已遭截斷。

training status: creating
training status: ready
Model ID: 9d893595-1690-4cf2-a4b1-fbac0fb11909
Status: ready
Training started on: Thu Aug 20 2020 20:27:26 GMT-0700 (Pacific Daylight Time)
Training completed on: Thu Aug 20 2020 20:27:37 GMT-0700 (Pacific Daylight Time)
We have recognized the following fields
The model found field 'field-0'
The model found field 'field-1'
The model found field 'field-2'
The model found field 'field-3'
The model found field 'field-4'
The model found field 'field-5'
The model found field 'field-6'
The model found field 'field-7'
...
Document name: Form_1.jpg
Document status: succeeded
Document page count: 1
Document errors:
Document name: Form_2.jpg
Document status: succeeded
Document page count: 1
Document errors:
Document name: Form_3.jpg
Document status: succeeded
Document page count: 1
Document errors:
...

訓練具備標籤的模型

您也可以手動標記訓練文件來訓練自訂模型。 在某些情況下,使用標籤來訓練會讓效能更佳。 若要使用標籤來訓練,您的 Blob 儲存體容器中除了訓練文件以外,還必須要有特殊的標籤資訊檔案 (<filename>.pdf.labels.json)。 文件智慧服務範例標籤工具提供可協助您建立這些標籤檔案的 UI。 取得這些檔案之後,即可呼叫 beginTraining 方法,並將 uselabels 參數設為 true

async function trainModelLabels() {

    const containerSasUrl = "<SAS-URL-of-your-form-folder-in-blob-storage>";

    const poller = await trainingClient.beginTraining(containerSasUrl, true, {
        onProgress: (state) => { console.log(`training status: ${state.status}`); }
    });
    const model = await poller.pollUntilDone();

    if (!model) {
        throw new Error("Expecting valid training result!");
    }

    console.log(`Model ID: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log(`Training started on: ${model.trainingStartedOn}`);
    console.log(`Training completed on: ${model.trainingCompletedOn}`);

    if (model.submodels) {
        for (const submodel of model.submodels) {
            // since the training data is unlabeled, we are unable to return the accuracy of this model
            console.log("We have recognized the following fields");
            for (const key in submodel.fields) {
                const field = submodel.fields[key];
                console.log(`The model found field '${field.name}'`);
            }
        }
    }
    // Training document information
    if (model.trainingDocuments) {
        for (const doc of model.trainingDocuments) {
            console.log(`Document name: ${doc.name}`);
            console.log(`Document status: ${doc.status}`);
            console.log(`Document page count: ${doc.pageCount}`);
            console.log(`Document errors: ${doc.errors}`);
        }
    }
}

trainModelLabels().catch((err) => {
    console.error("The sample encountered an error:", err);
});

以下是使用可從 JavaScript SDK 取得的定型資料所定型模型的輸出。 為了方便閱讀,此範例結果已遭截斷。

training status: creating
training status: ready
Model ID: 789b1b37-4cc3-4e36-8665-9dde68618072
Status: ready
Training started on: Thu Aug 20 2020 20:30:37 GMT-0700 (Pacific Daylight Time)
Training completed on: Thu Aug 20 2020 20:30:43 GMT-0700 (Pacific Daylight Time)
We have recognized the following fields
The model found field 'CompanyAddress'
The model found field 'CompanyName'
The model found field 'CompanyPhoneNumber'
The model found field 'DatedAs'
...
Document name: Form_1.jpg
Document status: succeeded
Document page count: 1
Document errors: undefined
Document name: Form_2.jpg
Document status: succeeded
Document page count: 1
Document errors: undefined
Document name: Form_3.jpg
Document status: succeeded
Document page count: 1
Document errors: undefined
...

使用自訂模型分析表單

本節示範如何使用以自身表單訓練的模型,從您的自訂範本類型中擷取索引鍵/值資訊和其他內容。

重要

若要這樣做,您必須先訓練模型,才能將其識別碼傳遞至方法作業。 請參閱訓練模型一節。

您可以使用 beginRecognizeCustomFormsFromUrl 方法。 傳回的值是 RecognizedForm 物件的集合。 提交的文件中每個頁面都有一個物件。

async function recognizeCustom() {
    // Model ID from when you trained your model.
    const modelId = "<modelId>";
    const formUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png";

    const poller = await client.beginRecognizeCustomForms(modelId, formUrl, {
        onProgress: (state) => { console.log(`status: ${state.status}`); }
    });
    const forms = await poller.pollUntilDone();

    console.log("Forms:");
    for (const form of forms || []) {
        console.log(`${form.formType}, page range: ${form.pageRange}`);
        console.log("Pages:");
        for (const page of form.pages || []) {
            console.log(`Page number: ${page.pageNumber}`);
            console.log("Tables");
            for (const table of page.tables || []) {
                for (const cell of table.cells) {
                    console.log(`cell (${cell.rowIndex},${cell.columnIndex}) ${cell.text}`);
                }
            }
        }

        console.log("Fields:");
        for (const fieldName in form.fields) {
            // each field is of type FormField
            const field = form.fields[fieldName];
            console.log(
                `Field ${fieldName} has value '${field.value}' with a confidence score of ${field.confidence}`
            );
        }
    }
}

recognizeCustom().catch((err) => {
    console.error("The sample encountered an error:", err);
});

提示

您也可以使用 FormRecognizerClient 方法來分析本機檔案,例如 beginRecognizeCustomForms

status: notStarted
status: succeeded
Forms:
custom:form, page range: [object Object]
Pages:
Page number: 1
Tables
cell (0,0) Invoice Number
cell (0,1) Invoice Date
cell (0,2) Invoice Due Date
cell (0,3) Charges
cell (0,5) VAT ID
cell (1,0) 34278587
cell (1,1) 6/18/2017
cell (1,2) 6/24/2017
cell (1,3) $56,651.49
cell (1,5) PT
Fields:
Field Merchant has value 'Invoice For:' with a confidence score of 0.116
Field CompanyPhoneNumber has value '$56,651.49' with a confidence score of 0.249
Field VendorName has value 'Charges' with a confidence score of 0.145
Field CompanyAddress has value '1 Redmond way Suite 6000 Redmond, WA' with a confidence score of 0.258
Field CompanyName has value 'PT' with a confidence score of 0.245
Field Website has value '99243' with a confidence score of 0.114
Field DatedAs has value 'undefined' with a confidence score of undefined
Field Email has value 'undefined' with a confidence score of undefined
Field PhoneNumber has value 'undefined' with a confidence score of undefined
Field PurchaseOrderNumber has value 'undefined' with a confidence score of undefined
Field Quantity has value 'undefined' with a confidence score of undefined
Field Signature has value 'undefined' with a confidence score of undefined
Field Subtotal has value 'undefined' with a confidence score of undefined
Field Tax has value 'undefined' with a confidence score of undefined
Field Total has value 'undefined' with a confidence score of undefined

管理自訂模型

本節示範如何管理您的帳戶中儲存的自訂模型。 下列程式碼範例會在單一函式中執行所有模型管理工作。

取得模型數目

下列程式碼區塊會取得目前在您帳戶中的模型數目。

async function countModels() {
    // First, we see how many custom models we have, and what our limit is
    const accountProperties = await trainingClient.getAccountProperties();
    console.log(
        `Our account has ${accountProperties.customModelCount} custom models, and we can have at most ${accountProperties.customModelLimit} custom models`
    );
}
countModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});

取得帳戶中的模型清單

下列程式碼區塊會提供您帳戶中可用模型的完整清單,包括模型建立時間和其目前狀態的相關資訊。

async function listModels() {

    // returns an async iteratable iterator that supports paging
    const result = trainingClient.listCustomModels();
    let i = 0;
    for await (const modelInfo of result) {
        console.log(`model ${i++}:`);
        console.log(modelInfo);
    }
}

listModels().catch((err) => {
    console.error("The sample encountered an error:", err);
});

結果看起來如下輸出。

model 0:
{
  modelId: '453cc2e6-e3eb-4e9f-aab6-e1ac7b87e09e',
  status: 'invalid',
  trainingStartedOn: 2020-08-20T22:28:52.000Z,
  trainingCompletedOn: 2020-08-20T22:28:53.000Z
}
model 1:
{
  modelId: '628739de-779c-473d-8214-d35c72d3d4f7',
  status: 'ready',
  trainingStartedOn: 2020-08-20T23:16:51.000Z,
  trainingCompletedOn: 2020-08-20T23:16:59.000Z
}
model 2:
{
  modelId: '789b1b37-4cc3-4e36-8665-9dde68618072',
  status: 'ready',
  trainingStartedOn: 2020-08-21T03:30:37.000Z,
  trainingCompletedOn: 2020-08-21T03:30:43.000Z
}
model 3:
{
  modelId: '9d893595-1690-4cf2-a4b1-fbac0fb11909',
  status: 'ready',
  trainingStartedOn: 2020-08-21T03:27:26.000Z,
  trainingCompletedOn: 2020-08-21T03:27:37.000Z
}

依頁面取得模型識別碼的清單

此程式碼區塊會提供模型和模型識別碼的分頁清單。

async function listModelsByPage() {
    // using `byPage()`
    i = 1;
    for await (const response of trainingClient.listCustomModels().byPage()) {
        for (const modelInfo of response.modelList) {
            console.log(`model ${i++}: ${modelInfo.modelId}`);
        }
    }
}
listModelsByPage().catch((err) => {
    console.error("The sample encountered an error:", err);
});

結果看起來如下輸出。

model 1: 453cc2e6-e3eb-4e9f-aab6-e1ac7b87e09e
model 2: 628739de-779c-473d-8214-d35c72d3d4f7
model 3: 789b1b37-4cc3-4e36-8665-9dde68618072

依識別碼取得模型

下列函式會採用模型識別碼,並取得相符的模型物件。 預設不會呼叫此函式。

async function getModel(modelId) {
    // Now we'll get the first custom model in the paged list
    const model = await client.getCustomModel(modelId);
    console.log("--- First Custom Model ---");
    console.log(`Model Id: ${model.modelId}`);
    console.log(`Status: ${model.status}`);
    console.log("Documents used in training:");
    for (const doc of model.trainingDocuments || []) {
        console.log(`- ${doc.name}`);
    }
}

從資源帳戶中刪除模型

您也可以參考模型的識別碼,從帳戶中將其刪除。 此函式會刪除具有指定識別碼的模型。 預設不會呼叫此函式。

async function deleteModel(modelId) {
    await client.deleteModel(modelId);
    try {
        const deleted = await client.getCustomModel(modelId);
        console.log(deleted);
    } catch (err) {
        // Expected
        console.log(`Model with id ${modelId} has been deleted`);
    }
}

結果看起來如下輸出。

Model with id 789b1b37-4cc3-4e36-8665-9dde68618072 has been deleted

執行應用程式

對專案檔使用 node 命令以執行應用程式。

node index.js

清除資源

如果您想要清除和移除 Azure AI 服務訂用帳戶,則可以刪除資源或資源群組。 刪除資源群組也會刪除與其相關聯的任何其他資源。

疑難排解

使用此程式庫時,您可以設定下列環境變數來查看偵錯記錄。

export DEBUG=azure*

如需如何啟用記錄的詳細指示,請參閱 @azure/記錄器套件文件

下一步

針對此專案,您使用了文件智慧服務的 JavaScript 用戶端程式庫,以不同方式來定型模型和分析表單。 接下來,您將了解建立更好的訓練資料集有何秘訣,然後產生更精確的模型。

重要

此專案是針對文件智慧服務 REST API 版本 2.1。

參考文件 | 程式庫來源程式碼 | 套件 (PyPi) | 範例

必要條件

  • Azure 訂用帳戶 - 建立免費帳戶

  • Python 3.x。 您安裝的 Python 應包含 pip。 您可以在命令列上執行 pip --version 來檢查是否已安裝 pip。 安裝最新版本的 Python 以取得 pip。

  • 包含一組訓練資料的 Azure 儲存體 Blob。 請參閱建置和定型自訂模型,以獲得如何將訓練資料集放在一起的祕訣和選項。 在本專案中,您可以使用範例資料集Train 資料夾底下的檔案。 下載 sample_data .zip並將其解壓縮。

  • 文件智慧資源。 在 Azure 入口網站中建立文件智慧服務資源。 您可以使用免費定價層 (F0) 來試用服務,之後可升級至付費層以用於實際執行環境。

    1. 部署資源之後,請選取 [移至資源]
    2. 在左側導覽功能表中,選取 [金鑰和端點]。
    3. 複製其中一個金鑰和 [端點],以供稍後在本文中使用。

    Azure 入口網站中金鑰與端點位置的螢幕擷取畫面。

設定程式設計環境

安裝用戶端程式庫並建立 Python 應用程式。

安裝用戶端程式庫

  • 安裝 Python 之後,請執行下列命令來安裝最新版本的文件智慧服務用戶端程式庫。

    pip install azure-ai-formrecognizer 
    

建立 Python 應用程式

  1. 在編輯器或 IDE 中建立名為 form-recognizer.py 的 Python 應用程式。

  2. 匯入下列程式庫。

    import os
    from azure.core.exceptions import ResourceNotFoundError
    from azure.ai.formrecognizer import FormRecognizerClient
    from azure.ai.formrecognizer import FormTrainingClient
    from azure.core.credentials import AzureKeyCredential
    
  3. 為資源的 Azure 端點和金鑰建立變數。

    endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE"
    key = "PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE"
    

使用物件模型

透過文件智慧服務,您可以建立兩種不同的用戶端類型。 第一個是 form_recognizer_client,會查詢服務,以辨識出表單欄位和內容。 第二個是 form_training_client,會建立及管理自訂模型,以改善辨識效果。

form_recognizer_client 提供下列作業:

  • 使用已定型的自訂模型辨識表單欄位和內容,以分析自訂表單。
  • 辨識表單內容,包括資料表、行和字組,無須定型模型。
  • 使用文件智慧服務上預先定型的收據模型,辨識收據的常見欄位。

form_training_client 會提供作業以:

  • 將自訂模型定型,以分析在自訂表單中找到的所有欄位和值。 請參閱本文中的訓練不具備標籤的模型
  • 將自訂模型定型,藉由為自訂表單加上標籤來分析您指定的特定欄位和值。 請參閱本文中的訓練具備標籤的模型
  • 管理在您的帳戶中建立的模型。
  • 將自訂模型從一個文件智慧服務資源複製到另一個。

注意

您也可以使用圖形化使用者介面 (例如文件智慧服務標籤工具) 將模型定型。

驗證用戶端

使用在上方定義的訂用帳戶變數來驗證兩個用戶端物件。 使用 AzureKeyCredential 物件,這樣當您有需要時,不必建立新的用戶端物件就能更新金鑰。

form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))

取得用於測試的資產

您需要為訓練和測試資料新增 URL 的參考。

  1. 若要擷取自訂模型訓練資料的 SAS URL,請移至 Azure 入口網站中的儲存體資源,然後選取 [資料儲存]>[容器]

  2. 瀏覽至您的容器,以滑鼠右鍵按一下,然後選取 [產生 SAS]

    取得您容器的 SAS,而不是儲存體帳戶本身的 SAS。

  3. 確定 [讀取]、[寫入]、[刪除] 和 [列出] 權限均已選取,然後選取 [產生 SAS 權杖和 URL]

  4. 將 [URL] 區段中的值複製到暫存位置。 其格式應該為:https://<storage account>.blob.core.windows.net/<container name>?<SAS value>

使用範例中包含的範例表單和收據影像,也可在 GitHub 上取得。 或者,您也可以使用上述步驟來取得 Blob 儲存體中個別文件的 SAS URL。

注意

此專案中的程式碼片段會使用 URL 所存取的遠端表單。 如果您想要改為處理本機文件,請參閱參考文件範例中的相關方法。

分析版面配置

您可以使用文件智慧服務來分析文件中的資料表、行和字組,而不需要訓練模型。 如需版面配置擷取的詳細資訊,請參閱文件智慧服務版面配置模型

若要分析位於指定 URL 的檔案內容,請使用 begin_recognize_content_from_url 方法。 傳回的值是 FormPage 物件的集合。 提交的文件中每個頁面都有一個物件。 下列程式碼會逐一查看這些物件,並列印擷取到的索引鍵/值組和資料表資料。

formUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/forms/Form_1.jpg"

poller = form_recognizer_client.begin_recognize_content_from_url(formUrl)
page = poller.result()

table = page[0].tables[0] # page 1, table 1
print("Table found on page {}:".format(table.page_number))
for cell in table.cells:
    print("Cell text: {}".format(cell.text))
    print("Location: {}".format(cell.bounding_box))
    print("Confidence score: {}\n".format(cell.confidence))

提示

您也可以使用 FormRecognizerClient 方法從本機影像取得內容,例如 begin_recognize_content

Table found on page 1:
Cell text: Invoice Number
Location: [Point(x=0.5075, y=2.8088), Point(x=1.9061, y=2.8088), Point(x=1.9061, y=3.3219), Point(x=0.5075, y=3.3219)]
Confidence score: 1.0

Cell text: Invoice Date
Location: [Point(x=1.9061, y=2.8088), Point(x=3.3074, y=2.8088), Point(x=3.3074, y=3.3219), Point(x=1.9061, y=3.3219)]
Confidence score: 1.0

Cell text: Invoice Due Date
Location: [Point(x=3.3074, y=2.8088), Point(x=4.7074, y=2.8088), Point(x=4.7074, y=3.3219), Point(x=3.3074, y=3.3219)]
Confidence score: 1.0

Cell text: Charges
Location: [Point(x=4.7074, y=2.8088), Point(x=5.386, y=2.8088), Point(x=5.386, y=3.3219), Point(x=4.7074, y=3.3219)]
Confidence score: 1.0
...

分析收據

本節示範如何使用預先定型的收據模型,分析並擷取美國收據中的常見欄位。 如需收據分析的詳細資訊,請參閱文件智慧服務收據模型。 若要從 URL 分析收據,請使用 begin_recognize_receipts_from_url 方法。

receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"

poller = form_recognizer_client.begin_recognize_receipts_from_url(receiptUrl)
result = poller.result()

for receipt in result:
    for name, field in receipt.fields.items():
        if name == "Items":
            print("Receipt Items:")
            for idx, items in enumerate(field.value):
                print("...Item #{}".format(idx + 1))
                for item_name, item in items.value.items():
                    print("......{}: {} has confidence {}".format(item_name, item.value, item.confidence))
        else:
            print("{}: {} has confidence {}".format(name, field.value, field.confidence))

提示

您也可以使用 FormRecognizerClient 方法來分析本機收據影像,例如 begin_recognize_receipts

ReceiptType: Itemized has confidence 0.659
MerchantName: Contoso Contoso has confidence 0.516
MerchantAddress: 123 Main Street Redmond, WA 98052 has confidence 0.986
MerchantPhoneNumber: None has confidence 0.99
TransactionDate: 2019-06-10 has confidence 0.985
TransactionTime: 13:59:00 has confidence 0.968
Receipt Items:
...Item #1
......Name: 8GB RAM (Black) has confidence 0.916
......TotalPrice: 999.0 has confidence 0.559
...Item #2
......Quantity: None has confidence 0.858
......Name: SurfacePen has confidence 0.858
......TotalPrice: 99.99 has confidence 0.386
Subtotal: 1098.99 has confidence 0.964
Tax: 104.4 has confidence 0.713
Total: 1203.39 has confidence 0.774

分析名片

本節示範如何使用預先定型的模型,分析和擷取英文名片中的常見欄位。 如需名片分析的詳細資訊,請參閱文件智慧服務名片模型

若要從 URL 分析名片,請使用 begin_recognize_business_cards_from_url 方法。

bcUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/samples/sample_forms/business_cards/business-card-english.jpg"

poller = form_recognizer_client.begin_recognize_business_cards_from_url(bcUrl)
business_cards = poller.result()

for idx, business_card in enumerate(business_cards):
    print("--------Recognizing business card #{}--------".format(idx+1))
    contact_names = business_card.fields.get("ContactNames")
    if contact_names:
        for contact_name in contact_names.value:
            print("Contact First Name: {} has confidence: {}".format(
                contact_name.value["FirstName"].value, contact_name.value["FirstName"].confidence
            ))
            print("Contact Last Name: {} has confidence: {}".format(
                contact_name.value["LastName"].value, contact_name.value["LastName"].confidence
            ))
    company_names = business_card.fields.get("CompanyNames")
    if company_names:
        for company_name in company_names.value:
            print("Company Name: {} has confidence: {}".format(company_name.value, company_name.confidence))
    departments = business_card.fields.get("Departments")
    if departments:
        for department in departments.value:
            print("Department: {} has confidence: {}".format(department.value, department.confidence))
    job_titles = business_card.fields.get("JobTitles")
    if job_titles:
        for job_title in job_titles.value:
            print("Job Title: {} has confidence: {}".format(job_title.value, job_title.confidence))
    emails = business_card.fields.get("Emails")
    if emails:
        for email in emails.value:
            print("Email: {} has confidence: {}".format(email.value, email.confidence))
    websites = business_card.fields.get("Websites")
    if websites:
        for website in websites.value:
            print("Website: {} has confidence: {}".format(website.value, website.confidence))
    addresses = business_card.fields.get("Addresses")
    if addresses:
        for address in addresses.value:
            print("Address: {} has confidence: {}".format(address.value, address.confidence))
    mobile_phones = business_card.fields.get("MobilePhones")
    if mobile_phones:
        for phone in mobile_phones.value:
            print("Mobile phone number: {} has confidence: {}".format(phone.value, phone.confidence))
    faxes = business_card.fields.get("Faxes")
    if faxes:
        for fax in faxes.value:
            print("Fax number: {} has confidence: {}".format(fax.value, fax.confidence))
    work_phones = business_card.fields.get("WorkPhones")
    if work_phones:
        for work_phone in work_phones.value:
            print("Work phone number: {} has confidence: {}".format(work_phone.value, work_phone.confidence))
    other_phones = business_card.fields.get("OtherPhones")
    if other_phones:
        for other_phone in other_phones.value:
            print("Other phone number: {} has confidence: {}".format(other_phone.value, other_phone.confidence))

提示

您也可以使用 FormRecognizerClient 方法來分析本機名片影像,例如 begin_recognize_business_cards

分析發票

本節示範如何使用預先定型的模型,分析和擷取銷售發票中的常見欄位。 如需發票分析的詳細資訊,請參閱文件智慧服務發票模型

若要從 URL 分析發票,請使用 begin_recognize_invoices_from_url 方法。

invoiceUrl = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/simple-invoice.png"

poller = form_recognizer_client.begin_recognize_invoices_from_url(invoiceUrl)
invoices = poller.result()

for idx, invoice in enumerate(invoices):
    print("--------Recognizing invoice #{}--------".format(idx+1))
    vendor_name = invoice.fields.get("VendorName")
    if vendor_name:
        print("Vendor Name: {} has confidence: {}".format(vendor_name.value, vendor_name.confidence))
    vendor_address = invoice.fields.get("VendorAddress")
    if vendor_address:
        print("Vendor Address: {} has confidence: {}".format(vendor_address.value, vendor_address.confidence))
    customer_name = invoice.fields.get("CustomerName")
    if customer_name:
        print("Customer Name: {} has confidence: {}".format(customer_name.value, customer_name.confidence))
    customer_address = invoice.fields.get("CustomerAddress")
    if customer_address:
        print("Customer Address: {} has confidence: {}".format(customer_address.value, customer_address.confidence))
    customer_address_recipient = invoice.fields.get("CustomerAddressRecipient")
    if customer_address_recipient:
        print("Customer Address Recipient: {} has confidence: {}".format(customer_address_recipient.value, customer_address_recipient.confidence))
    invoice_id = invoice.fields.get("InvoiceId")
    if invoice_id:
        print("Invoice Id: {} has confidence: {}".format(invoice_id.value, invoice_id.confidence))
    invoice_date = invoice.fields.get("InvoiceDate")
    if invoice_date:
        print("Invoice Date: {} has confidence: {}".format(invoice_date.value, invoice_date.confidence))
    invoice_total = invoice.fields.get("InvoiceTotal")
    if invoice_total:
        print("Invoice Total: {} has confidence: {}".format(invoice_total.value, invoice_total.confidence))
    due_date = invoice.fields.get("DueDate")
    if due_date:
        print("Due Date: {} has confidence: {}".format(due_date.value, due_date.confidence))

提示

您也可以使用 FormRecognizerClient 方法來分析本機發票影像,例如 begin_recognize_invoices

分析身分證明文件

本節示範如何使用文件智慧服務預先建置的身分證明模型,分析並擷取政府發行的身分證明文件 (包括全球護照和美國駕照) 授權的重要資訊。 如需身分證明文件分析的詳細資訊,請參閱文件智慧服務身分證明文件模型

若要從 URL 分析身分證明文件,請使用 begin_recognize_id_documents_from_url 方法。

idURL = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-REST-api-samples/master/curl/form-recognizer/id-license.jpg"

for idx, id_document in enumerate(id_documents):
    print("--------Recognizing ID document #{}--------".format(idx+1))
    first_name = id_document.fields.get("FirstName")
    if first_name:
        print("First Name: {} has confidence: {}".format(first_name.value, first_name.confidence))
    last_name = id_document.fields.get("LastName")
    if last_name:
        print("Last Name: {} has confidence: {}".format(last_name.value, last_name.confidence))
    document_number = id_document.fields.get("DocumentNumber")
    if document_number:
        print("Document Number: {} has confidence: {}".format(document_number.value, document_number.confidence))
    dob = id_document.fields.get("DateOfBirth")
    if dob:
        print("Date of Birth: {} has confidence: {}".format(dob.value, dob.confidence))
    doe = id_document.fields.get("DateOfExpiration")
    if doe:
        print("Date of Expiration: {} has confidence: {}".format(doe.value, doe.confidence))
    sex = id_document.fields.get("Sex")
    if sex:
        print("Sex: {} has confidence: {}".format(sex.value, sex.confidence))
    address = id_document.fields.get("Address")
    if address:
        print("Address: {} has confidence: {}".format(address.value, address.confidence))
    country_region = id_document.fields.get("CountryRegion")
    if country_region:
        print("Country/Region: {} has confidence: {}".format(country_region.value, country_region.confidence))
    region = id_document.fields.get("Region")
    if region:
        print("Region: {} has confidence: {}".format(region.value, region.confidence))

提示

您也可以使用 FormRecognizerClient 方法來分析身分證明文件影像,例如 begin_recognize_identity_documents

定型自訂模型

本節會示範如何使用自己的資料來訓練模型。 經過訓練的模型能夠輸出結構化資料,且其中包含原始文件內的索引鍵/值關聯。 定型模型後,您可以測試、重新定型模型,並最終根據您的需求使用此模型從更多表單中可靠地擷取資料。

注意

您也可以使用圖形化使用者介面 (例如文件智慧服務範例標記工具) 來定型模型。

訓練沒有標籤的模型

訓練自訂模型,以分析在自訂表單中找到的所有欄位和值,而不需要手動標記訓練文件。

下列程式碼會將訓練用戶端和 begin_training 函式搭配使用,在指定的文件集上訓練模型。 傳回的 CustomFormModel 物件包含模型可分析的表單類型資訊,及其可從每個表單類型中擷取的欄位。 下列程式碼區塊會將此資訊列印至主控台。

# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=False)
model = poller.result()

print("Model ID: {}".format(model.model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))

以下為使用 Python SDK 所提供的定型資料所定型模型的輸出內容。

Model ID: 628739de-779c-473d-8214-d35c72d3d4f7
Status: ready
Training started on: 2020-08-20 23:16:51+00:00
Training completed on: 2020-08-20 23:16:59+00:00

Recognized fields:
The submodel with form type 'form-0' has recognized the following fields: Additional Notes:, Address:, Company Name:, Company Phone:, Dated As:, Details, Email:, Hero Limited, Name:, Phone:, Purchase Order, Purchase Order #:, Quantity, SUBTOTAL, Seattle, WA 93849 Phone:, Shipped From, Shipped To, TAX, TOTAL, Total, Unit Price, Vendor Name:, Website:
Document name: Form_1.jpg
Document status: succeeded
Document page count: 1
Document errors: []
Document name: Form_2.jpg
Document status: succeeded
Document page count: 1
Document errors: []
Document name: Form_3.jpg
Document status: succeeded
Document page count: 1
Document errors: []
Document name: Form_4.jpg
Document status: succeeded
Document page count: 1
Document errors: []
Document name: Form_5.jpg
Document status: succeeded
Document page count: 1
Document errors: []

訓練具備標籤的模型

您也可以手動標記訓練文件來訓練自訂模型。 在某些情況下,使用標籤來訓練會讓效能更佳。 傳回的 CustomFormModel 會指出模型可擷取的欄位,及其在每個欄位中的預估正確性。 下列程式碼區塊會將此資訊列印至主控台。

重要

若要使用標籤來訓練,您的 Blob 儲存體容器中除了訓練文件以外,還必須要有特殊的標籤資訊檔案 (<filename>.pdf.labels.json)。 文件智慧服務範例標籤工具提供可協助您建立這些標籤檔案的 UI。 取得這些檔案之後,即可呼叫 begin_training 函式,並將 use_training_labels 參數設為 true

# To train a model you need an Azure Storage account.
# Use the SAS URL to access your training files.
trainingDataUrl = "PASTE_YOUR_SAS_URL_OF_YOUR_FORM_FOLDER_IN_BLOB_STORAGE_HERE"

poller = form_training_client.begin_training(trainingDataUrl, use_training_labels=True)
model = poller.result()
trained_model_id = model.model_id

print("Model ID: {}".format(trained_model_id))
print("Status: {}".format(model.status))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("\nRecognized fields:")
for submodel in model.submodels:
    print(
        "The submodel with form type '{}' has recognized the following fields: {}".format(
            submodel.form_type,
            ", ".join(
                [
                    field.label if field.label else name
                    for name, field in submodel.fields.items()
                ]
            ),
        )
    )

# Training result information
for doc in model.training_documents:
    print("Document name: {}".format(doc.name))
    print("Document status: {}".format(doc.status))
    print("Document page count: {}".format(doc.page_count))
    print("Document errors: {}".format(doc.errors))

以下為使用 Python SDK 所提供的定型資料所定型模型的輸出內容。

Model ID: ae636292-0b14-4e26-81a7-a0bfcbaf7c91

Status: ready
Training started on: 2020-08-20 23:20:56+00:00
Training completed on: 2020-08-20 23:20:57+00:00

Recognized fields:
The submodel with form type 'form-ae636292-0b14-4e26-81a7-a0bfcbaf7c91' has recognized the following fields: CompanyAddress, CompanyName, CompanyPhoneNumber, DatedAs, Email, Merchant, PhoneNumber, PurchaseOrderNumber, Quantity, Signature, Subtotal, Tax, Total, VendorName, Website
Document name: Form_1.jpg
Document status: succeeded
Document page count: 1
Document errors: []
Document name: Form_2.jpg
Document status: succeeded
Document page count: 1
Document errors: []
Document name: Form_3.jpg
Document status: succeeded
Document page count: 1
Document errors: []
Document name: Form_4.jpg
Document status: succeeded
Document page count: 1
Document errors: []
Document name: Form_5.jpg
Document status: succeeded
Document page count: 1
Document errors: []

使用自訂模型分析表單

本節示範如何使用以自身表單訓練的模型,從您的自訂範本類型中擷取索引鍵/值資訊和其他內容。

重要

若要這樣做,您必須先訓練模型,才能將其識別碼傳遞至方法作業。 請參閱訓練模型一節。

您可以使用 begin_recognize_custom_forms_from_url 方法。 傳回的值是 RecognizedForm 物件的集合。 提交的文件中每個頁面都有一個物件。 下列程式碼會將分析結果列印至主控台。 列印內容包括辨識到的每個欄位和對應的值,以及信賴分數。


poller = form_recognizer_client.begin_recognize_custom_forms_from_url(
    model_id=trained_model_id, form_url=formUrl)
result = poller.result()

for recognized_form in result:
    print("Form type: {}".format(recognized_form.form_type))
    for name, field in recognized_form.fields.items():
        print("Field '{}' has label '{}' with value '{}' and a confidence score of {}".format(
            name,
            field.label_data.text if field.label_data else name,
            field.value,
            field.confidence
        ))

提示

您也可以分析本機映像。 請參閱 FormRecognizerClient 方法,例如 begin_recognize_custom_forms。 或如需本機映像的相關案例,請參閱 GitHub 上的範例程式碼。

上一個範例中的模型呈現下列輸出:

Form type: form-ae636292-0b14-4e26-81a7-a0bfcbaf7c91
Field 'Merchant' has label 'Merchant' with value 'Invoice For:' and a confidence score of 0.116
Field 'CompanyAddress' has label 'CompanyAddress' with value '1 Redmond way Suite 6000 Redmond, WA' and a confidence score of 0.258
Field 'Website' has label 'Website' with value '99243' and a confidence score of 0.114
Field 'VendorName' has label 'VendorName' with value 'Charges' and a confidence score of 0.145
Field 'CompanyPhoneNumber' has label 'CompanyPhoneNumber' with value '$56,651.49' and a confidence score of 0.249
Field 'CompanyName' has label 'CompanyName' with value 'PT' and a confidence score of 0.245
Field 'DatedAs' has label 'DatedAs' with value 'None' and a confidence score of None
Field 'Email' has label 'Email' with value 'None' and a confidence score of None
Field 'PhoneNumber' has label 'PhoneNumber' with value 'None' and a confidence score of None
Field 'PurchaseOrderNumber' has label 'PurchaseOrderNumber' with value 'None' and a confidence score of None
Field 'Quantity' has label 'Quantity' with value 'None' and a confidence score of None
Field 'Signature' has label 'Signature' with value 'None' and a confidence score of None
Field 'Subtotal' has label 'Subtotal' with value 'None' and a confidence score of None
Field 'Tax' has label 'Tax' with value 'None' and a confidence score of None
Field 'Total' has label 'Total' with value 'None' and a confidence score of None

管理自訂模型

本節示範如何管理您的帳戶中儲存的自訂模型。

檢查 FormRecognizer 資源帳戶中的模型數

下列程式碼區塊會檢查您已在文件智慧服務帳戶中儲存的模型數,並比對帳戶限制。

account_properties = form_training_client.get_account_properties()
print("Our account has {} custom models, and we can have at most {} custom models".format(
    account_properties.custom_model_count, account_properties.custom_model_limit
))

結果看起來如下輸出。

Our account has 5 custom models, and we can have at most 5000 custom models

列出目前儲存於資源帳戶中的模型

下列程式碼區塊會列出您帳戶中目前的模型,並將其詳細資料列印至主控台。 這也會儲存第一個模型的參考。

# Next, we get a paged list of all of our custom models
custom_models = form_training_client.list_custom_models()

print("We have models with the following ids:")

# Let's pull out the first model
first_model = next(custom_models)
print(first_model.model_id)
for model in custom_models:
    print(model.model_id)

結果看起來如下輸出。

以下是測試帳戶的範例輸出。

We have models with the following ids:
453cc2e6-e3eb-4e9f-aab6-e1ac7b87e09e
628739de-779c-473d-8214-d35c72d3d4f7
ae636292-0b14-4e26-81a7-a0bfcbaf7c91
b4b5df77-8538-4ffb-a996-f67158ecd305
c6309148-6b64-4fef-aea0-d39521452699

使用模型的識別碼來取得特定模型

下列程式碼區塊會使用上一節中儲存的模型識別碼,並用其來擷取模型相關的詳細資料。

custom_model = form_training_client.get_custom_model(model_id=trained_model_id)
print("Model ID: {}".format(custom_model.model_id))
print("Status: {}".format(custom_model.status))
print("Training started on: {}".format(custom_model.training_started_on))
print("Training completed on: {}".format(custom_model.training_completed_on))

以下為上一個範例中所建立自訂模型的範例輸出。

Model ID: ae636292-0b14-4e26-81a7-a0bfcbaf7c91
Status: ready
Training started on: 2020-08-20 23:20:56+00:00
Training completed on: 2020-08-20 23:20:57+00:00

從資源帳戶中刪除模型

您也可以參考模型的識別碼,從帳戶中將其刪除。 此程式碼會刪除上一節所使用的模型。

form_training_client.delete_model(model_id=custom_model.model_id)

try:
    form_training_client.get_custom_model(model_id=custom_model.model_id)
except ResourceNotFoundError:
    print("Successfully deleted model with id {}".format(custom_model.model_id))

執行應用程式

使用 python 命令執行應用程式:

python form-recognizer.py

清除資源

如果您想要清除和移除 Azure AI 服務訂用帳戶,則可以刪除資源或資源群組。 刪除資源群組也會刪除與其相關聯的任何其他資源。

疑難排解

這些問題可能有助於疑難排解。

一般

文件智慧服務用戶端程式庫會引發 Azure 核心中所定義的例外狀況。

記錄

此程式庫會使用標準記錄程式庫進行記錄。 HTTP 工作階段的基本資訊 (例如 URL 和標頭) 會記錄在「資訊」層級。

您可以在具備 logging_enable 關鍵字引數的用戶端啟用詳細的「偵錯」層級記錄,包括要求/回應本文和未刪改的標頭:

import sys
import logging
from azure.ai.formrecognizer import FormRecognizerClient
from azure.core.credentials import AzureKeyCredential

# Create a logger for the 'azure' SDK
logger = logging.getLogger('azure')
logger.setLevel(logging.DEBUG)

# Configure a console output
handler = logging.StreamHandler(stream=sys.stdout)
logger.addHandler(handler)

endpoint = "PASTE_YOUR_FORM_RECOGNIZER_ENDPOINT_HERE"
credential = AzureKeyCredential("PASTE_YOUR_FORM_RECOGNIZER_SUBSCRIPTION_KEY_HERE")

# This client will log detailed information about its HTTP sessions, at DEBUG level
form_recognizer_client = FormRecognizerClient(endpoint, credential, logging_enable=True)

同樣地,logging_enable 可對單一作業啟用詳細記錄,即使未對用戶端啟用也可行:

receiptUrl = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"
poller = form_recognizer_client.begin_recognize_receipts_from_url(receiptUrl, logging_enable=True)

GitHub 上的 REST 範例

下一步

針對此專案,您使用了文件智慧服務的 Python 用戶端程式庫,以不同方式來定型模型和分析表單。 接下來,您將了解建立更好的訓練資料集有何秘訣,然後產生更精確的模型。

注意

此專案的目標設為使用 cURL 執行 REST API 呼叫的 Azure AI 文件智慧服務 API 2.1 版。

文件智慧服務 REST API | Azure REST API 參考

必要條件

  • Azure 訂用帳戶 - 建立免費帳戶

  • 已安裝 cURL 命令列工具。 Windows 10 和 Windows 11 隨附 cURL 的複本。 在命令提示字元中,輸入下列 cURL 命令。 如果顯示說明選項,則會在您的 Windows 環境中安裝 cURL。

    curl -help
    

    如果未安裝 cURL,您可以在這裡取得:

  • PowerShell 6.0 版以上,或類似的命令列應用程式。

  • 包含一組訓練資料的 Azure 儲存體 Blob。 請參閱建置和定型自訂模型,以獲得如何將訓練資料集放在一起的祕訣和選項。 您可以使用範例資料集Train 資料夾底下的檔案。 下載 sample_data .zip並將其解壓縮。

  • Azure AI 服務或文件智慧服務資源。 建立 single-servicemulti-service。 您可以使用免費定價層 (F0) 來試用服務,之後可升級至付費層以用於實際執行環境。

  • 從您所建立資源的金鑰和端點,將應用程式連線至 Azure 文件智慧服務。

    1. 部署資源之後,請選取 [移至資源]
    2. 在左側導覽功能表中,選取 [金鑰和端點]。
    3. 複製其中一個金鑰和 [端點],以供稍後在本文中使用。

    Azure 入口網站中金鑰與端點位置的螢幕擷取畫面。

  • 收據影像的 URL。 您可以使用範例影像

  • 名片影像的 URL。 您可以使用範例影像

  • 發票影像的 URL。 您可以使用範例文件

  • 身分證明文件影像的 URL。 您可以使用範例影像

分析版面配置

您可以使用文件智慧服務來分析並擷取文件中的資料表、選取標記、文字和結構,而不需要訓練模型。 如需版面配置擷取的詳細資訊,請參閱文件智慧服務版面配置模型

執行命令之前,請進行下列變更:

  1. <端點>取代為您使用文件智慧服務訂用帳戶取得的端點。
  2. <金鑰>取代為您在先前的步驟中複製的金鑰。
  3. <your-document-url> 取代為其中一個範例 URL。
curl -v -i POST "https://<endpoint>/formrecognizer/v2.1/layout/analyze" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: <key>" --data-ascii "{​​​​​​​'source': '<your-document-url>'}​​​​​​​​"

您會收到包含唯讀 Operation-Location 標頭的 202 (Success) 回應。 此標頭的值包含 resultId,可透過查詢以取得非同步作業的狀態,並且可使用 GET 要求搭配您的相同資源訂用帳戶金鑰來擷取結果:

https://cognitiveservice/formrecognizer/v2.1/layout/analyzeResults/<resultId>

在下列範例中,URL 中在 analyzeResults/ 之後的字串就是結果識別碼。

https://cognitiveservice/formrecognizer/v2/layout/analyzeResults/54f0b076-4e38-43e5-81bd-b85b8835fdfb

取得配置結果

呼叫分析配置 API 後,請輪詢取得分析配置結果 API 來取得作業狀態並擷取資料。 執行命令之前,請進行下列變更:

  1. <端點>取代為您使用文件智慧服務訂用帳戶取得的端點。
  2. <金鑰>取代為您在先前的步驟中複製的金鑰。
  3. <resultId> 取代為先前步驟中的結果識別碼。
curl -v -X GET "https://<endpoint>/formrecognizer/v2.1/layout/analyzeResults/<resultId>" -H "Ocp-Apim-Subscription-Key: <key>"

您收到 200 (success) 回應及 JSON 內容。

請參閱下列發票影像和其對應的 JSON 輸出。

  • "readResults" 節點包含每一行文字,以及各自的周框方塊在頁面上的位置。
  • selectionMarks 節點顯示每個選取標記 (核取方塊、選項標記),以及其狀態是 selectedunselected
  • "pageResults" 區段包含擷取的資料表。 針對每個資料表,會擷取文字、資料列和資料行索引、資料列和資料行擴展、周框方塊等。

具有資料表的 Contoso 專案陳述文件照片。

為了簡單起見,我們已將此回應本文輸出內容縮短。 請參閱 GitHub 上的完整範例輸出

{
    "status": "succeeded",
    "createdDateTime": "2020-08-20T20:40:50Z",
    "lastUpdatedDateTime": "2020-08-20T20:40:55Z",
    "analyzeResult": {
        "version": "2.1.0",
        "readResults": [
            {
                "page": 1,
                "angle": 0,
                "width": 8.5,
                "height": 11,
                "unit": "inch",
                "lines": [
                    {
                        "boundingBox": [
                            0.5826,
                            0.4411,
                            2.3387,
                            0.4411,
                            2.3387,
                            0.7969,
                            0.5826,
                            0.7969
                        ],
                        "text": "Contoso, Ltd.",
                        "words": [
                            {
                                "boundingBox": [
                                    0.5826,
                                    0.4411,
                                    1.744,
                                    0.4411,
                                    1.744,
                                    0.7969,
                                    0.5826,
                                    0.7969
                                ],
                                "text": "Contoso,",
                                "confidence": 1
                            },
                            {
                                "boundingBox": [
                                    1.8448,
                                    0.4446,
                                    2.3387,
                                    0.4446,
                                    2.3387,
                                    0.7631,
                                    1.8448,
                                    0.7631
                                ],
                                "text": "Ltd.",
                                "confidence": 1
                            }
                        ]
                    },
                    ...
                        ]
                    }
                ],
                "selectionMarks": [
                    {
                        "boundingBox": [
                            3.9737,
                            3.7475,
                            4.1693,
                            3.7475,
                            4.1693,
                            3.9428,
                            3.9737,
                            3.9428
                        ],
                        "confidence": 0.989,
                        "state": "selected"
                    },
                    ...
                ]
            }
        ],
        "pageResults": [
            {
                "page": 1,
                "tables": [
                    {
                        "rows": 5,
                        "columns": 5,
                        "cells": [
                            {
                                "rowIndex": 0,
                                "columnIndex": 0,
                                "text": "Training Date",
                                "boundingBox": [
                                    0.5133,
                                    4.2167,
                                    1.7567,
                                    4.2167,
                                    1.7567,
                                    4.4492,
                                    0.5133,
                                    4.4492
                                ],
                                "elements": [
                                    "#/readResults/0/lines/12/words/0",
                                    "#/readResults/0/lines/12/words/1"
                                ]
                            },
                            ...
                        ]
                    },
                    ...
                ]
            }
        ]
    }
}

分析收據

本節示範如何使用預先定型的收據模型,分析並擷取美國收據中的常見欄位。 如需收據分析的詳細資訊,請參閱文件智慧服務收據模型。 若要開始分析收據,請使用 cURL 命令呼叫分析收據 API。 執行命令之前,請進行下列變更:

  1. <端點>取代為您使用文件智慧服務訂用帳戶取得的端點。
  2. <您的收據 URL> 取代為收據影像的 URL 位址。
  3. <金鑰>取代為您在先前的步驟中複製的金鑰。
curl -i -X POST "https://<endpoint>/formrecognizer/v2.1/prebuilt/receipt/analyze" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: <key>" --data-ascii "{ 'source': '<your receipt URL>'}"

您收到 202 (Success) 回應,其中包含 Operation-Location 標頭。 此標頭的值會包含一個結果識別碼,可用來查詢非同步作業狀態並取得結果:

https://cognitiveservice/formrecognizer/v2.1/prebuilt/receipt/analyzeResults/<resultId>

在下列範例中,operations/ 後面的字串就是結果識別碼:

https://cognitiveservice/formrecognizer/v2.1/prebuilt/receipt/operations/aeb13e15-555d-4f02-ba47-04d89b487ed5

取得收據結果

呼叫分析收據 API 之後,您可以呼叫取得分析收據結果 API 來取得作業狀態並擷取資料。 執行命令之前,請進行下列變更:

  1. <端點>取代為您使用文件智慧服務金鑰取得的端點。
  2. <resultId> 取代為先前步驟中的結果識別碼。
  3. 以您的金鑰取代<金鑰>
curl -X GET "https://<endpoint>/formrecognizer/v2.1/prebuilt/receipt/analyzeResults/<resultId>" -H "Ocp-Apim-Subscription-Key: <key>"

您收到 200 (Success) 回應及 JSON 輸出。 第一個 "status" 欄位會指出作業的狀態。 如果作業未完成,而 "status" 的值是 "running""notStarted",此時您應該以手動方式或透過指令碼再次呼叫 API。 我們建議您在每個呼叫之前間隔一秒以上的時間。

如果您將選用的 includeTextDetails 參數設定為 true,則 "readResults" 節點包含所有已辨識的文字。 回應會依頁面組織文字,然後依行排列,然後依個別單字組織文字。 "documentResults" 節點包含此模型所探索到的收據專屬值。 您可在 "documentResults" 節點中找到有用的索引鍵/值組,例如稅額、總計、商家地址等等。

請參閱下列收據影像和其對應的 JSON 輸出。

顯示 Contoso 的印刷收據照片。

為了可讀性,我們已將此回應本文輸出內容縮短。 請參閱 GitHub 上的完整範例輸出

{
  "status":"succeeded",
  "createdDateTime":"2019-12-17T04:11:24Z",
  "lastUpdatedDateTime":"2019-12-17T04:11:32Z",
  "analyzeResult":{
    "version":"2.1.0",
    "readResults":[
      {
        "page":1,
        "angle":0.6893,
        "width":1688,
        "height":3000,
        "unit":"pixel",
        "language":"en",
        "lines":[
          {
            "text":"Contoso",
            "boundingBox":[
              635,
              510,
              1086,
              461,
              1098,
              558,
              643,
              604
            ],
            "words":[
              {
                "text":"Contoso",
                "boundingBox":[
                  639,
                  510,
                  1087,
                  461,
                  1098,
                  551,
                  646,
                  604
                ],
                "confidence":0.955
              }
            ]
          },
          ...
        ]
      }
    ],
    "documentResults":[
      {
        "docType":"prebuilt:receipt",
        "pageRange":[
          1,
          1
        ],
        "fields":{
          "ReceiptType":{
            "type":"string",
            "valueString":"Itemized",
            "confidence":0.692
          },
          "MerchantName":{
            "type":"string",
            "valueString":"Contoso Contoso",
            "text":"Contoso Contoso",
            "boundingBox":[
              378.2,
              292.4,
              1117.7,
              468.3,
              1035.7,
              812.7,
              296.3,
              636.8
            ],
            "page":1,
            "confidence":0.613,
            "elements":[
              "#/readResults/0/lines/0/words/0",
              "#/readResults/0/lines/1/words/0"
            ]
          },
          "MerchantAddress":{
            "type":"string",
            "valueString":"123 Main Street Redmond, WA 98052",
            "text":"123 Main Street Redmond, WA 98052",
            "boundingBox":[
              302,
              675.8,
              848.1,
              793.7,
              809.9,
              970.4,
              263.9,
              852.5
            ],
            "page":1,
            "confidence":0.99,
            "elements":[
              "#/readResults/0/lines/2/words/0",
              "#/readResults/0/lines/2/words/1",
              "#/readResults/0/lines/2/words/2",
              "#/readResults/0/lines/3/words/0",
              "#/readResults/0/lines/3/words/1",
              "#/readResults/0/lines/3/words/2"
            ]
          },
          "MerchantPhoneNumber":{
            "type":"phoneNumber",
            "valuePhoneNumber":"+19876543210",
            "text":"987-654-3210",
            "boundingBox":[
              278,
              1004,
              656.3,
              1054.7,
              646.8,
              1125.3,
              268.5,
              1074.7
            ],
            "page":1,
            "confidence":0.99,
            "elements":[
              "#/readResults/0/lines/4/words/0"
            ]
          },
          "TransactionDate":{
            "type":"date",
            "valueDate":"2019-06-10",
            "text":"6/10/2019",
            "boundingBox":[
              265.1,
              1228.4,
              525,
              1247,
              518.9,
              1332.1,
              259,
              1313.5
            ],
            "page":1,
            "confidence":0.99,
            "elements":[
              "#/readResults/0/lines/5/words/0"
            ]
          },
          "TransactionTime":{
            "type":"time",
            "valueTime":"13:59:00",
            "text":"13:59",
            "boundingBox":[
              541,
              1248,
              677.3,
              1261.5,
              668.9,
              1346.5,
              532.6,
              1333
            ],
            "page":1,
            "confidence":0.977,
            "elements":[
              "#/readResults/0/lines/5/words/1"
            ]
          },
          "Items":{
            "type":"array",
            "valueArray":[
              {
                "type":"object",
                "valueObject":{
                  "Quantity":{
                    "type":"number",
                    "text":"1",
                    "boundingBox":[
                      245.1,
                      1581.5,
                      300.9,
                      1585.1,
                      295,
                      1676,
                      239.2,
                      1672.4
                    ],
                    "page":1,
                    "confidence":0.92,
                    "elements":[
                      "#/readResults/0/lines/7/words/0"
                    ]
                  },
                  "Name":{
                    "type":"string",
                    "valueString":"Cappuccino",
                    "text":"Cappuccino",
                    "boundingBox":[
                      322,
                      1586,
                      654.2,
                      1601.1,
                      650,
                      1693,
                      317.8,
                      1678
                    ],
                    "page":1,
                    "confidence":0.923,
                    "elements":[
                      "#/readResults/0/lines/7/words/1"
                    ]
                  },
                  "TotalPrice":{
                    "type":"number",
                    "valueNumber":2.2,
                    "text":"$2.20",
                    "boundingBox":[
                      1107.7,
                      1584,
                      1263,
                      1574,
                      1268.3,
                      1656,
                      1113,
                      1666
                    ],
                    "page":1,
                    "confidence":0.918,
                    "elements":[
                      "#/readResults/0/lines/8/words/0"
                    ]
                  }
                }
              },
              ...
            ]
          },
          "Subtotal":{
            "type":"number",
            "valueNumber":11.7,
            "text":"11.70",
            "boundingBox":[
              1146,
              2221,
              1297.3,
              2223,
              1296,
              2319,
              1144.7,
              2317
            ],
            "page":1,
            "confidence":0.955,
            "elements":[
              "#/readResults/0/lines/13/words/1"
            ]
          },
          "Tax":{
            "type":"number",
            "valueNumber":1.17,
            "text":"1.17",
            "boundingBox":[
              1190,
              2359,
              1304,
              2359,
              1304,
              2456,
              1190,
              2456
            ],
            "page":1,
            "confidence":0.979,
            "elements":[
              "#/readResults/0/lines/15/words/1"
            ]
          },
          "Tip":{
            "type":"number",
            "valueNumber":1.63,
            "text":"1.63",
            "boundingBox":[
              1094,
              2479,
              1267.7,
              2485,
              1264,
              2591,
              1090.3,
              2585
            ],
            "page":1,
            "confidence":0.941,
            "elements":[
              "#/readResults/0/lines/17/words/1"
            ]
          },
          "Total":{
            "type":"number",
            "valueNumber":14.5,
            "text":"$14.50",
            "boundingBox":[
              1034.2,
              2617,
              1387.5,
              2638.2,
              1380,
              2763,
              1026.7,
              2741.8
            ],
            "page":1,
            "confidence":0.985,
            "elements":[
              "#/readResults/0/lines/19/words/0"
            ]
          }
        }
      }
    ]
  }
}

分析名片

本節示範如何使用預先定型的模型,分析和擷取英文名片中的常見欄位。 如需名片分析的詳細資訊,請參閱文件智慧服務名片模型。 若要開始分析名片,請使用 cURL 命令呼叫分析名片 API。 執行命令之前,請進行下列變更:

  1. <端點>取代為您使用文件智慧服務訂用帳戶取得的端點。
  2. <您的名片 URL> 取代為收據影像的 URL 位址。
  3. <金鑰>取代為您在先前的步驟中複製的金鑰。
curl -i -X POST "https://<endpoint>/formrecognizer/v2.1/prebuilt/businessCard/analyze" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: <key>" --data-ascii "{ 'source': '<your receipt URL>'}"

您收到 202 (Success) 回應,其中包含 Operation-Location 標頭。 此標頭的值會包含一個結果識別碼,可用來查詢非同步作業狀態並取得結果:

https://cognitiveservice/formrecognizer/v2.1/prebuilt/businessCard/analyzeResults/<resultId>

在下列範例中,URL 中在 analyzeResults/ 之後的字串就是結果識別碼。

https://cognitiveservice/formrecognizer/v2.1/prebuilt/businessCard/analyzeResults/54f0b076-4e38-43e5-81bd-b85b8835fdfb

呼叫分析名片 API 之後,可呼叫取得分析名片結果 API 來取得作業狀態並擷取資料。 執行命令之前,請進行下列變更:

  1. <端點>取代為您使用文件智慧服務金鑰取得的端點。
  2. <resultId> 取代為先前步驟中的結果識別碼。
  3. 以您的金鑰取代<金鑰>
curl -v -X GET https://<endpoint>/formrecognizer/v2.1/prebuilt/businessCard/analyzeResults/<resultId>"
-H "Ocp-Apim-Subscription-Key: <key>"

您收到 200 (Success) 回應及 JSON 輸出。

"readResults" 節點包含所有已辨識的文字。 回應會依頁面組織文字,然後依行排列,然後依個別單字組織文字。 "documentResults" 節點包含此模型所探索到的名片專屬值。 您可以在 "documentResults" 節點中找到有用的資訊,例如公司名稱、名字、姓氏、電話號碼等等。

顯示名為 Contoso 的公司名片照片。

為了方便閱讀,我們已將此範例 JSON 輸出縮短。 請參閱 GitHub 上的完整範例輸出

{
    "status": "succeeded",
    "createdDateTime":"2021-02-09T18:14:05Z",
    "lastUpdatedDateTime":"2021-02-09T18:14:10Z",
    "analyzeResult": {
        "version": "2.1.0",
        "readResults": [
            {
             "page":1,
             "angle":-16.6836,
             "width":4032,
             "height":3024,
             "unit":"pixel"
          }
        ],
        "documentResults": [
            {
                "docType": "prebuilt:businesscard",
                "pageRange": [
                    1,
                    1
                ],
                "fields": {
                    "ContactNames": {
                        "type": "array",
                        "valueArray": [
                            {
                                "type": "object",
                                "valueObject": {
                                    "FirstName": {
                                        "type": "string",
                                        "valueString": "Avery",
                                        "text": "Avery",
                                        "boundingBox": [
                                            703,
                                            1096,
                                            1134,
                                            989,
                                            1165,
                                            1109,
                                            733,
                                            1206
                                        ],
                                        "page": 1
                                },
                                "text": "Dr. Avery Smith",
                                "boundingBox": [
                                    419.3,
                                    1154.6,
                                    1589.6,
                                    877.9,
                                    1618.9,
                                    1001.7,
                                    448.6,
                                    1278.4
                                ],
                                "confidence": 0.993
                            }
                        ]
                    },
                    "Emails": {
                        "type": "array",
                        "valueArray": [
                            {
                                "type": "string",
                                "valueString": "avery.smith@contoso.com",
                                "text": "avery.smith@contoso.com",
                                "boundingBox": [
                                    2107,
                                    934,
                                    2917,
                                    696,
                                    2935,
                                    764,
                                    2126,
                                    995
                                ],
                                "page": 1,
                                "confidence": 0.99
                            }
                        ]
                    },
                    "Websites": {
                        "type": "array",
                        "valueArray": [
                            {
                                "type": "string",
                                "valueString": "https://www.contoso.com/",
                                "text": "https://www.contoso.com/",
                                "boundingBox": [
                                    2121,
                                    1002,
                                    2992,
                                    755,
                                    3014,
                                    826,
                                    2143,
                                    1077
                                ],
                                "page": 1,
                                "confidence": 0.995
                            }
                        ]
                    }
                }
            }
        ]
    }
}

指令碼會將回應輸出到主控台,直到分析名片作業完成。

分析發票

您可以使用文件智慧服務,從指定的發票文件中擷取欄位文字和語意值。 若要開始分析發票,請使用 cURL 命令。 如需發票分析的詳細資訊,請參閱發票概念指南。 若要開始分析發票,請使用 cURL 命令呼叫分析發票 API。

執行命令之前,請進行下列變更:

  1. <端點>取代為您使用文件智慧服務訂用帳戶取得的端點。
  2. <您的收據 URL> 取代為發票文件 的 URL 位址。
  3. 以您的金鑰取代<金鑰>
curl -v -i POST https://<endpoint>/formrecognizer/v2.1/prebuilt/invoice/analyze" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: <key>" --data-ascii "{​​​​​​​'source': '<your invoice URL>'}​​​​​​​​"

您收到 202 (Success) 回應,其中包含 Operation-Location 標頭。 此標頭的值會包含一個結果識別碼,可用來查詢非同步作業狀態並取得結果:

https://cognitiveservice/formrecognizer/v2.1/prebuilt/receipt/analyzeResults/<resultId>

在下列範例中,URL 之中位於 analyzeResults/ 後面的字串部分,就是結果識別碼:

https://cognitiveservice/formrecognizer/v2.1/prebuilt/invoice/analyzeResults/54f0b076-4e38-43e5-81bd-b85b8835fdfb

呼叫分析發票 API 之後,可以呼叫取得分析發票結果 API 來取得作業狀態並擷取資料。

執行命令之前,請進行下列變更:

  1. <端點>取代為您使用文件智慧服務金鑰取得的端點。
  2. <resultId> 取代為先前步驟中的結果識別碼。
  3. 以您的金鑰取代<金鑰>
curl -v -X GET "https://<endpoint>/formrecognizer/v2.1/prebuilt/invoice/analyzeResults/<resultId>" -H "Ocp-Apim-Subscription-Key: <key>"

您收到 200 (Success) 回應及 JSON 輸出。

  • 欄位 "readResults" 包含從發票中擷取的每一行文字。
  • "pageResults" 包含從發票中擷取的資料表和選取標記。
  • "documentResults" 欄位包含發票最重要部分的索引鍵/值資訊。

請參閱下列發票文件和其對應的 JSON 輸出。

為了可讀性,我們已將此回應本文 JSON 內容縮短。 請參閱 GitHub 上的完整範例輸出

{
    "status": "succeeded",
    "createdDateTime": "2020-11-06T23:32:11Z",
    "lastUpdatedDateTime": "2020-11-06T23:32:20Z",
    "analyzeResult": {
        "version": "2.1.0",
        "readResults": [{
            "page": 1,
            "angle": 0,
            "width": 8.5,
            "height": 11,
            "unit": "inch"
        }],
        "pageResults": [{
            "page": 1,
            "tables": [{
                "rows": 3,
                "columns": 4,
                "cells": [{
                    "rowIndex": 0,
                    "columnIndex": 0,
                    "text": "QUANTITY",
                    "boundingBox": [0.4953,
                    5.7306,
                    1.8097,
                    5.7306,
                    1.7942,
                    6.0122,
                    0.4953,
                    6.0122]
                },
                {
                    "rowIndex": 0,
                    "columnIndex": 1,
                    "text": "DESCRIPTION",
                    "boundingBox": [1.8097,
                    5.7306,
                    5.7529,
                    5.7306,
                    5.7452,
                    6.0122,
                    1.7942,
                    6.0122]
                },
                ...
                ],
                "boundingBox": [0.4794,
                5.7132,
                8.0158,
                5.714,
                8.0118,
                6.5627,
                0.4757,
                6.5619]
            },
            {
                "rows": 2,
                "columns": 6,
                "cells": [{
                    "rowIndex": 0,
                    "columnIndex": 0,
                    "text": "SALESPERSON",
                    "boundingBox": [0.4979,
                    4.963,
                    1.8051,
                    4.963,
                    1.7975,
                    5.2398,
                    0.5056,
                    5.2398]
                },
                {
                    "rowIndex": 0,
                    "columnIndex": 1,
                    "text": "P.O. NUMBER",
                    "boundingBox": [1.8051,
                    4.963,
                    3.3047,
                    4.963,
                    3.3124,
                    5.2398,
                    1.7975,
                    5.2398]
                },
                ...
                ],
                "boundingBox": [0.4976,
                4.961,
                7.9959,
                4.9606,
                7.9959,
                5.5204,
                0.4972,
                5.5209]
            }]
        }],
        "documentResults": [{
            "docType": "prebuilt:invoice",
            "pageRange": [1,
            1],
            "fields": {
                "AmountDue": {
                    "type": "number",
                    "valueNumber": 610,
                    "text": "$610.00",
                    "boundingBox": [7.3809,
                    7.8153,
                    7.9167,
                    7.8153,
                    7.9167,
                    7.9591,
                    7.3809,
                    7.9591],
                    "page": 1,
                    "confidence": 0.875
                },
                "BillingAddress": {
                    "type": "string",
                    "valueString": "123 Bill St, Redmond WA, 98052",
                    "text": "123 Bill St, Redmond WA, 98052",
                    "boundingBox": [0.594,
                    4.3724,
                    2.0125,
                    4.3724,
                    2.0125,
                    4.7125,
                    0.594,
                    4.7125],
                    "page": 1,
                    "confidence": 0.997
                },
                "BillingAddressRecipient": {
                    "type": "string",
                    "valueString": "Microsoft Finance",
                    "text": "Microsoft Finance",
                    "boundingBox": [0.594,
                    4.1684,
                    1.7907,
                    4.1684,
                    1.7907,
                    4.2837,
                    0.594,
                    4.2837],
                    "page": 1,
                    "confidence": 0.998
                },
                ...
            }
        }]
    }
}

分析身分識別文件

若要開始分析識別碼 (ID) 文件,請使用 cURL 命令。 如需身分證明文件分析的詳細資訊,請參閱文件智慧服務身分證明文件模型。 若要開始分析身分證明文件,請使用 cURL 命令呼叫分析身分證明文件 API。

執行命令之前,請進行下列變更:

  1. <端點>取代為您使用文件智慧服務訂用帳戶取得的端點。
  2. <您的識別碼文件 URL> 取代為收據影像的 URL 位址。
  3. <金鑰>取代為您在先前的步驟中複製的金鑰。
curl -i -X POST "https://<endpoint>/formrecognizer/v2.1/prebuilt/idDocument/analyze" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: <key>" --data-ascii "{ 'source': '<your ID document URL>'}"

您收到 202 (Success) 回應,其中包含 Operation-Location 標頭。 此標頭的值會包含一個結果識別碼,可用來查詢非同步作業狀態並取得結果:

https://cognitiveservice/formrecognizer/v2.1/prebuilt/documentId/analyzeResults/<resultId>

在下列範例中,analyzeResults/ 後面的字串就是結果識別碼:

https://westus.api.cognitive.microsoft.com/formrecognizer/v2.1/prebuilt/idDocument/analyzeResults/3bc1d6e0-e24c-41d2-8c50-14e9edc336d1

取得分析身分證明文件結果

在呼叫分析身分證明文件 API 後,呼叫取得身分證明文件分析結果 API,以取得作業狀態和擷取的資料。 執行命令之前,請進行下列變更:

  1. <端點>取代為您使用文件智慧服務金鑰取得的端點。
  2. <resultId> 取代為先前步驟中的結果識別碼。
  3. 以您的金鑰取代<金鑰>
curl -X GET "https://<endpoint>/formrecognizer/v2.1/prebuilt/idDocument/analyzeResults/<resultId>" -H "Ocp-Apim-Subscription-Key: <key>"

您收到 200 (Success) 回應及 JSON 輸出。 第一個 "status" 欄位會指出作業的狀態。 如果工作未完成,則的值 "status""running""notStarted"。 手動或透過指令碼再次呼叫 API,直到您收到 succeeded 值為止。 我們建議您在每個呼叫之前間隔一秒以上的時間。

  • 欄位 "readResults" 包含從身分證明文件中擷取的每一行文字。
  • "documentResults" 欄位包含物件的陣列,每個物件分別代表一個在輸入文件中偵測到的身分證明文件。

以下是範例身分證明文件及其對應的 JSON 輸出。

顯示範例驅動程式授權的螢幕擷取畫面。

以下是回應本文。

{
    "status": "succeeded",
    "createdDateTime": "2021-04-13T17:24:52Z",
    "lastUpdatedDateTime": "2021-04-13T17:24:55Z",
    "analyzeResult": {
      "version": "2.1.0",
      "readResults": [
        {
          "page": 1,
          "angle": -0.2823,
          "width": 450,
          "height": 294,
          "unit": "pixel"
        }
      ],
      "documentResults": [
        {
          "docType": "prebuilt:idDocument:driverLicense",
          "docTypeConfidence": 0.995,
          "pageRange": [
            1,
            1
          ],
          "fields": {
            "Address": {
              "type": "string",
              "valueString": "123 STREET ADDRESS YOUR CITY WA 99999-1234",
              "text": "123 STREET ADDRESS YOUR CITY WA 99999-1234",
              "boundingBox": [
                158,
                151,
                326,
                151,
                326,
                177,
                158,
                177
              ],
              "page": 1,
              "confidence": 0.965
            },
            "CountryRegion": {
              "type": "countryRegion",
              "valueCountryRegion": "USA",
              "confidence": 0.99
            },
            "DateOfBirth": {
              "type": "date",
              "valueDate": "1958-01-06",
              "text": "01/06/1958",
              "boundingBox": [
                187,
                133,
                272,
                132,
                272,
                148,
                187,
                149
              ],
              "page": 1,
              "confidence": 0.99
            },
            "DateOfExpiration": {
              "type": "date",
              "valueDate": "2020-08-12",
              "text": "08/12/2020",
              "boundingBox": [
                332,
                230,
                414,
                228,
                414,
                244,
                332,
                245
              ],
              "page": 1,
              "confidence": 0.99
            },
            "DocumentNumber": {
              "type": "string",
              "valueString": "LICWDLACD5DG",
              "text": "LIC#WDLABCD456DG",
              "boundingBox": [
                162,
                70,
                307,
                68,
                307,
                84,
                163,
                85
              ],
              "page": 1,
              "confidence": 0.99
            },
            "FirstName": {
              "type": "string",
              "valueString": "LIAM R.",
              "text": "LIAM R.",
              "boundingBox": [
                158,
                102,
                216,
                102,
                216,
                116,
                158,
                116
              ],
              "page": 1,
              "confidence": 0.985
            },
            "LastName": {
              "type": "string",
              "valueString": "TALBOT",
              "text": "TALBOT",
              "boundingBox": [
                160,
                86,
                213,
                85,
                213,
                99,
                160,
                100
              ],
              "page": 1,
              "confidence": 0.987
            },
            "Region": {
              "type": "string",
              "valueString": "Washington",
              "confidence": 0.99
            },
            "Sex": {
              "type": "string",
              "valueString": "M",
              "text": "M",
              "boundingBox": [
                226,
                190,
                232,
                190,
                233,
                201,
                226,
                201
              ],
              "page": 1,
              "confidence": 0.99
            }
          }
        }
      ]
    }
  }

定型自訂模型

若要將自訂模型定型,您需要一組 Azure 儲存體 Blob 中的定型資料。 您需要至少五個類型/結構相同的已填妥表單 (PDF 文件和/或影像)。 請參閱建置和定型自訂模型,以獲得如何將訓練資料放在一起的祕訣和選項。

沒有加上標籤資料的定型是預設作業,而且比較簡單。 或者您可以事先手動為部分或所有定型資料加上標籤。 手動標記是更複雜的程序,但可產生較佳的定型模型。

注意

您也可以使用圖形化使用者介面 (例如文件智慧服務範例標記工具) 來定型模型。

訓練沒有標籤的模型

若要使用 Azure Blob 容器中的文件來定型文件智慧服務模型,請執行下列 cURL 命令以呼叫 [定型自訂模型] API。 執行命令之前,請進行下列變更:

  1. <端點>取代為您使用文件智慧服務訂用帳戶取得的端點。
  2. <金鑰>取代為您在先前的步驟中複製的金鑰。
  3. <SAS URL> 取代為 Azure Blob 儲存體容器的共用存取簽章 (SAS) URL。

若要擷取自訂模型定型資料的 SAS URL:

  1. 移至 Azure 入口網站中的儲存體資源,然後選取 [資料儲存體]>[容器]

  2. 瀏覽至您的容器,以滑鼠右鍵按一下,然後選取 [產生 SAS]

    取得您容器的 SAS,而不是儲存體帳戶本身的 SAS。

  3. 確定 [讀取]、[寫入]、[刪除] 和 [列出] 權限均已選取,然後選取 [產生 SAS 權杖和 URL]

  4. 將 [URL] 區段中的值複製到暫存位置。 其格式應該為:https://<storage account>.blob.core.windows.net/<container name>?<SAS value>

進行變更,然後執行命令:

curl -i -X POST "https://<endpoint>/formrecognizer/v2.1/custom/models" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: <key>" --data-ascii "{ 'source': '<SAS URL>'}"

您收到包含 Location 標頭的 201 (Success) 回應。 此標頭的值會包含新定型模型的模型識別碼,可用來查詢作業狀態和取得結果:

https://<endpoint>/formrecognizer/v2.1/custom/models/<modelId>

在下列範例中,URL 之中位於 models/ 後面的字串部分,就是模型識別碼。

https://westus.api.cognitive.microsoft.com/formrecognizer/v2.1/custom/models/77d8ecad-b8c1-427e-ac20-a3fe4af503e9

訓練具備標籤的模型

若要使用標籤來訓練,您的 Blob 儲存體容器中除了訓練文件以外,還必須要有特殊的標籤資訊檔案 (<filename>.pdf.labels.json)。 文件智慧服務範例標籤工具提供可協助您建立這些標籤檔案的 UI。 有了這些檔案之後,即可呼叫定型自訂模型 API,並且在 JSON 主體中將 "useLabelFile" 參數設定為 true

執行命令之前,請進行下列變更:

  1. <端點>取代為您使用文件智慧服務訂用帳戶取得的端點。
  2. <金鑰>取代為您在先前的步驟中複製的金鑰。
  3. <SAS URL> 取代為 Azure Blob 儲存體容器的共用存取簽章 (SAS) URL。

若要擷取自訂模型定型資料的 SAS URL:

  1. 移至 Azure 入口網站中的儲存體資源,然後選取 [資料儲存體]>[容器]。1. 瀏覽至您的容器,以滑鼠右鍵按一下,然後選取 [產生 SAS]

    取得您容器的 SAS,而不是儲存體帳戶本身的 SAS。

  2. 確定 [讀取]、[寫入]、[刪除] 和 [列出] 權限均已選取,然後選取 [產生 SAS 權杖和 URL]

  3. 將 [URL] 區段中的值複製到暫存位置。 其格式應該為:https://<storage account>.blob.core.windows.net/<container name>?<SAS value>

進行變更,然後執行命令:

curl -i -X POST "https://<endpoint>/formrecognizer/v2.1/custom/models" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: <key>" --data-ascii "{ 'source': '<SAS URL>', 'useLabelFile':true}"

您收到包含 Location 標頭的 201 (Success) 回應。 此標頭的值會包含新定型模型的模型識別碼,可用來查詢作業狀態和取得結果:

https://<endpoint>/formrecognizer/v2.1/custom/models/<modelId>

在下列範例中,URL 之中位於 models/ 後面的字串部分,就是模型識別碼。

https://westus.api.cognitive.microsoft.com/formrecognizer/v2.1/custom/models/62e79d93-78a7-4d18-85be-9540dbb8e792

開始進行定型作業後,請使用取得自訂模型檢查定型狀態。 將模型識別碼傳入此 API 要求中,以檢查定型狀態:

  1. <端點>取代為您使用文件智慧服務金鑰取得的端點。
  2. 以您的金鑰取代<金鑰>
  3. <模型識別碼>取代為您在先前的步驟中取得的模型識別碼
curl -X GET "https://<endpoint>/formrecognizer/v2.1/custom/models/<modelId>" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: <key>"

使用自訂模型分析表單

接下來,使用新定型的模型來分析文件,並從中擷取欄位和資料表。 執行下列 cURL 命令,以呼叫分析表單 API。 執行命令之前,請進行下列變更:

  1. <端點>取代為您從文件智慧服務金鑰取得的端點。
  2. <模型識別碼>取代為您在上一節中取得的模型識別碼。
  3. <SAS URL> 取代為您在 Azure 儲存體中的檔案的 SAS URL。 請依照「訓練」一節中的步驟操作,但不要取得整個 Blob 容器的 SAS URL,而是取得您要分析之特定檔案的 URL。
  4. 以您的金鑰取代<金鑰>
curl -v "https://<endpoint>/formrecognizer/v2.1/custom/models/<modelId>/analyze?includeTextDetails=true" -H "Content-Type: application/json" -H "Ocp-Apim-Subscription-Key: <key>" -d "{ 'source': '<SAS URL>' } "

您收到包含 Operation-Location 標頭的 202 (Success) 回應。 此標頭的值會包含您用來追蹤分析作業結果的結果識別碼:

https://cognitiveservice/formrecognizer/v2.1/custom/models/<modelId>/analyzeResults/<resultId>

在下列範例中,URL 中在 analyzeResults/ 之後的字串就是結果識別碼。

https://cognitiveservice/formrecognizer/v2/layout/analyzeResults/e175e9db-d920-4c7d-bc44-71d1653cdd06

請儲存此結果識別碼以供下一個步驟使用。

呼叫分析表單結果 API 以查詢分析作業的結果。

  1. <端點>取代為您從文件智慧服務金鑰取得的端點。
  2. <結果識別碼>取代為您在上一節中取得的識別碼。
  3. 以您的金鑰取代<金鑰>
curl -X GET "https://<endpoint>/formrecognizer/v2.1/custom/models/<modelId>/analyzeResults/<resultId>" -H "Ocp-Apim-Subscription-Key: <key>"

您收到 200 (Success) 回應,內含下列格式的 JSON 本文。 為了簡單起見,我們已將輸出內容縮短。 請留意底部附近的 "status" 欄位。 分析作業完成時,此欄位的值會是 "succeeded"。 如果分析作業未完成,您必須重新執行命令,以重新查詢服務。 我們建議您在每個呼叫之前間隔一秒以上的時間。

在沒有標籤的情況下定型的自訂模型中,索引鍵/值組關聯和資料表位於 JSON 輸出的 "pageResults" 節點中。 在沒有標籤的情況下定型的自訂模型中,索引鍵/值組關聯位於 "documentResults" 節點中。 如果您也透過 includeTextDetails URL 參數指定了純文字擷取,則 "readResults" 節點會顯示文件中所有文字的內容和位置。

為了簡單起見,此範例 JSON 輸出已縮短。 請參閱 GitHub 上的完整範例輸出

{
  "status": "succeeded",
  "createdDateTime": "2020-08-21T01:13:28Z",
  "lastUpdatedDateTime": "2020-08-21T01:13:42Z",
  "analyzeResult": {
    "version": "2.1.0",
    "readResults": [
      {
        "page": 1,
        "angle": 0,
        "width": 8.5,
        "height": 11,
        "unit": "inch",
        "lines": [
          {
            "text": "Project Statement",
            "boundingBox": [
              5.0444,
              0.3613,
              8.0917,
              0.3613,
              8.0917,
              0.6718,
              5.0444,
              0.6718
            ],
            "words": [
              {
                "text": "Project",
                "boundingBox": [
                  5.0444,
                  0.3587,
                  6.2264,
                  0.3587,
                  6.2264,
                  0.708,
                  5.0444,
                  0.708
                ]
              },
              {
                "text": "Statement",
                "boundingBox": [
                  6.3361,
                  0.3635,
                  8.0917,
                  0.3635,
                  8.0917,
                  0.6396,
                  6.3361,
                  0.6396
                ]
              }
            ]
          },
          ...
        ]
      }
    ],
    "pageResults": [
      {
        "page": 1,
        "keyValuePairs": [
          {
            "key": {
              "text": "Date:",
              "boundingBox": [
                6.9833,
                1.0615,
                7.3333,
                1.0615,
                7.3333,
                1.1649,
                6.9833,
                1.1649
              ],
              "elements": [
                "#/readResults/0/lines/2/words/0"
              ]
            },
            "value": {
              "text": "9/10/2020",
              "boundingBox": [
                7.3833,
                1.0802,
                7.925,
                1.0802,
                7.925,
                1.174,
                7.3833,
                1.174
              ],
              "elements": [
                "#/readResults/0/lines/3/words/0"
              ]
            },
            "confidence": 1
          },
          ...
        ],
        "tables": [
          {
            "rows": 5,
            "columns": 5,
            "cells": [
              {
                "text": "Training Date",
                "rowIndex": 0,
                "columnIndex": 0,
                "boundingBox": [
                  0.6944,
                  4.2779,
                  1.5625,
                  4.2779,
                  1.5625,
                  4.4005,
                  0.6944,
                  4.4005
                ],
                "confidence": 1,
                "rowSpan": 1,
                "columnSpan": 1,
                "elements": [
                  "#/readResults/0/lines/15/words/0",
                  "#/readResults/0/lines/15/words/1"
                ],
                "isHeader": true,
                "isFooter": false
              },
              ...
            ]
          }
        ],
        "clusterId": 0
      }
    ],
    "documentResults": [],
    "errors": []
  }
}

改善結果

檢查 "pageResults" 節點下每個索引鍵/值結果的 "confidence" 值。 您也應該查看 "readResults" 節點中的信賴分數,其對應至文字讀取作業。 讀取結果的信賴度並不會影響索引鍵/值擷取結果的信賴度,因此您應該同時檢查這兩者。

  • 如果讀取作業的信賴分數很低,請嘗試改善輸入文件的品質。 如需詳細資訊,請參閱輸入需求
  • 如果索引鍵/值擷取作業的信賴分數很低,請確定所分析的文件與訓練集中使用的文件類型相同。 如果訓練集中的文件有外觀變化,請考慮將其劃分成不同的資料夾,並針對每個變化訓練一個模型。

您的目標信賴分數將取決於您的使用案例,但通常最好是以 80% 或更高的分數為目標。 對於更敏感的案例,例如讀取醫療記錄或對帳單,我們建議使用 100% 的分數。

管理自訂模型

在下列命令中使用列出自訂模型 API,傳回屬於您訂閱之所有自訂模型的清單。

  1. <端點>取代為您使用文件智慧服務訂用帳戶取得的端點。
  2. <金鑰>取代為您在先前的步驟中複製的金鑰。
curl -v -X GET "https://<endpoint>/formrecognizer/v2.1/custom/models?op=full"
-H "Ocp-Apim-Subscription-Key: <key>"

您收到 200 成功回應,其中包含如下所示的 JSON 資料。 "modelList" 元素包含所有已建立的模型及相關資訊。

{
  "summary": {
    "count": 0,
    "limit": 0,
    "lastUpdatedDateTime": "string"
  },
  "modelList": [
    {
      "modelId": "string",
      "status": "creating",
      "createdDateTime": "string",
      "lastUpdatedDateTime": "string"
    }
  ],
  "nextLink": "string"
}

取得特定模型

若要擷取特定自訂模型的詳細資訊,請在下列命令中使用取得自訂模型 API。

  1. <端點>取代為您使用文件智慧服務訂用帳戶取得的端點。
  2. <金鑰>取代為您在先前的步驟中複製的金鑰。
  3. 以想要查閱的自訂模型識別碼取代 <modelId>
curl -v -X GET "https://<endpoint>/formrecognizer/v2.1/custom/models/<modelId>" -H "Ocp-Apim-Subscription-Key: <key>"

您收到 200 成功回應,其中包含如下所示的要求本文 JSON 資料。

{
  "modelInfo": {
    "modelId": "string",
    "status": "creating",
    "createdDateTime": "string",
    "lastUpdatedDateTime": "string"
  },
  "keys": {
    "clusters": {}
  },
  "trainResult": {
    "trainingDocuments": [
      {
        "documentName": "string",
        "pages": 0,
        "errors": [
          "string"
        ],
        "status": "succeeded"
      }
    ],
    "fields": [
      {
        "fieldName": "string",
        "accuracy": 0.0
      }
    ],
    "averageModelAccuracy": 0.0,
    "errors": [
      {
        "message": "string"
      }
    ]
  }
}

從資源帳戶中刪除模型

您也可以參考模型的識別碼,從帳戶中將其刪除。 此命令會呼叫刪除自訂模型 API,以刪除上一節中使用的模型。

  1. <端點>取代為您使用文件智慧服務訂用帳戶取得的端點。
  2. <金鑰>取代為您在先前的步驟中複製的金鑰。
  3. 以想要查閱的自訂模型識別碼取代 <modelId>
curl -v -X DELETE "https://<endpoint>/formrecognizer/v2.1/custom/models/<modelId>" -H "Ocp-Apim-Subscription-Key: <key>"

您收到 204 成功回應,指出您的模型標示為要刪除。 模型成品會在 48 小時內移除。

下一步

針對此專案,您使用了文件智慧服務 REST API,以不同方式分析表單。 接下來,請參閱參考文件來深入學習文件智慧服務 API。