共用方式為


快速入門:偵測個人識別資訊 (PII)

注意

本快速入門僅涵蓋文件中的 PII 偵測。 若要深入了解如何在交談中偵測 PII,請參閱如何在交談中偵測及修訂 PII

參考文件 | 更多樣本 | 套件 (NuGet) | 程式庫原始程式碼

使用本快速入門,透過適用於 .NET 的用戶端程式庫,建立個人識別資訊 (PII) 偵測應用程式。 在下列範例中,您會建立 C# 應用程式,以便識別文字中辨識的敏感性資訊

提示

您可以使用 Azure AI Foundry 來嘗試摘要,而不需要撰寫程式代碼。

必要條件

設定

建立環境變數

您的應用程式必須經過驗證後,才能傳送 API 要求。 在生產環境中,請運用安全的方式來儲存和存取您的登入資訊。 在此範例中,您會在執行應用程式的本機電腦上將認證寫入環境變數。

若要設定語言資源金鑰的環境變數,請開啟主控台視窗,並遵循作業系統和開發環境的指示進行。

  • 若要設定 LANGUAGE_KEY 環境變數,請將 your-key 取代為您資源的其中一個金鑰。
  • 若要設定 LANGUAGE_ENDPOINT 環境變數,請將 your-endpoint 取代為您資源的端點。

重要

如果您使用 API 金鑰,請將其安全地儲存在別處,例如 Azure Key Vault。 請勿在程式碼中直接包含 API 金鑰,且切勿公開張貼金鑰。

如需 AI 服務安全性的詳細資訊,請參閱驗證對 Azure AI 服務的要求 (英文)。

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

注意

如果您只需要存取目前執行中主控台的環境變數,您可以使用 set (而不是 setx) 來設定環境變數。

新增環境變數之後,您可能需要重新啟動任何需要讀取環境變數的執行中程式,包括主控台視窗。 例如,如果您使用 Visual Studio 做為編輯器,請在執行範例前重新啟動 Visual Studio。

建立新的 .NET Core 應用程式

使用 Visual Studio IDE,建立新的 .NET Core 主控台應用程式。 這會建立 "Hello World" 專案,內含單一 C# 來源檔案:program.cs。

以滑鼠右鍵按一下 [方案總管] 中的解決方案,然後選取 [管理 NuGet 套件],以安裝用戶端程式庫。 在開啟的封裝管理員中,選取 [瀏覽] 並搜尋 Azure.AI.TextAnalytics。 選取版本 5.2.0,然後 安裝。 您也可以使用套件管理員主控台

程式碼範例

將下列程式碼複製到 program.cs 檔案中,並執行該程式碼。

using Azure;
using System;
using Azure.AI.TextAnalytics;

namespace Example
{
    class Program
    {
        // This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
        static string languageKey = Environment.GetEnvironmentVariable("LANGUAGE_KEY");
        static string languageEndpoint = Environment.GetEnvironmentVariable("LANGUAGE_ENDPOINT");

        private static readonly AzureKeyCredential credentials = new AzureKeyCredential(languageKey);
        private static readonly Uri endpoint = new Uri(languageEndpoint);

        // Example method for detecting sensitive information (PII) from text 
        static void RecognizePIIExample(TextAnalyticsClient client)
        {
            string document = "Call our office at 312-555-1234, or send an email to support@contoso.com.";
        
            PiiEntityCollection entities = client.RecognizePiiEntities(document).Value;
        
            Console.WriteLine($"Redacted Text: {entities.RedactedText}");
            if (entities.Count > 0)
            {
                Console.WriteLine($"Recognized {entities.Count} PII entit{(entities.Count > 1 ? "ies" : "y")}:");
                foreach (PiiEntity entity in entities)
                {
                    Console.WriteLine($"Text: {entity.Text}, Category: {entity.Category}, SubCategory: {entity.SubCategory}, Confidence score: {entity.ConfidenceScore}");
                }
            }
            else
            {
                Console.WriteLine("No entities were found.");
            }
        }

        static void Main(string[] args)
        {
            var client = new TextAnalyticsClient(endpoint, credentials);
            RecognizePIIExample(client);

            Console.Write("Press any key to exit.");
            Console.ReadKey();
        }

    }
}

輸出

Redacted Text: Call our office at ************, or send an email to *******************.
Recognized 2 PII entities:
Text: 312-555-1234, Category: PhoneNumber, SubCategory: , Confidence score: 0.8
Text: support@contoso.com, Category: Email, SubCategory: , Confidence score: 0.8

參考文件 | 更多樣本 | 套件 (Maven) | 程式庫原始程式碼

使用本快速入門,透過適用於 Java 的用戶端程式庫,建立個人識別資訊 (PII) 偵測應用程式。 在下列範例中,您會建立 Java 應用程式,以便識別文字中辨識的敏感性資訊

提示

您可以使用 Azure AI Foundry 來嘗試摘要,而不需要撰寫程式代碼。

必要條件

設定

建立環境變數

您的應用程式必須經過驗證後,才能傳送 API 要求。 在生產環境中,請運用安全的方式來儲存和存取您的登入資訊。 在此範例中,您會在執行應用程式的本機電腦上將認證寫入環境變數。

若要設定語言資源金鑰的環境變數,請開啟主控台視窗,並遵循作業系統和開發環境的指示進行。

  • 若要設定 LANGUAGE_KEY 環境變數,請將 your-key 取代為您資源的其中一個金鑰。
  • 若要設定 LANGUAGE_ENDPOINT 環境變數,請將 your-endpoint 取代為您資源的端點。

重要

如果您使用 API 金鑰,請將其安全地儲存在別處,例如 Azure Key Vault。 請勿在程式碼中直接包含 API 金鑰,且切勿公開張貼金鑰。

如需 AI 服務安全性的詳細資訊,請參閱驗證對 Azure AI 服務的要求 (英文)。

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

注意

如果您只需要存取目前執行中主控台的環境變數,您可以使用 set (而不是 setx) 來設定環境變數。

新增環境變數之後,您可能需要重新啟動任何需要讀取環境變數的執行中程式,包括主控台視窗。 例如,如果您使用 Visual Studio 做為編輯器,請在執行範例前重新啟動 Visual Studio。

新增 用戶端程式庫

在您慣用的 IDE 或開發環境中建立 Maven 專案。 然後,在專案的 pom.xml 檔案中新增下列相依性。 您可以在線上找到其他建置工具的實作語法。

<dependencies>
     <dependency>
        <groupId>com.azure</groupId>
        <artifactId>azure-ai-textanalytics</artifactId>
        <version>5.2.0</version>
    </dependency>
</dependencies>

程式碼範例

建立名為 Example.java 的 Java 檔案。 開啟檔案,並複製下列程式碼。 然後執行程式碼。

import com.azure.core.credential.AzureKeyCredential;
import com.azure.ai.textanalytics.models.*;
import com.azure.ai.textanalytics.TextAnalyticsClientBuilder;
import com.azure.ai.textanalytics.TextAnalyticsClient;

public class Example {

    // This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
    private static String languageKey = System.getenv("LANGUAGE_KEY");
    private static String languageEndpoint = System.getenv("LANGUAGE_ENDPOINT");

    public static void main(String[] args) {
        TextAnalyticsClient client = authenticateClient(languageKey, languageEndpoint);
        recognizePiiEntitiesExample(client);
    }
    // Method to authenticate the client object with your key and endpoint
    static TextAnalyticsClient authenticateClient(String key, String endpoint) {
        return new TextAnalyticsClientBuilder()
                .credential(new AzureKeyCredential(key))
                .endpoint(endpoint)
                .buildClient();
    }

    // Example method for detecting sensitive information (PII) from text 
    static void recognizePiiEntitiesExample(TextAnalyticsClient client)
    {
        // The text that need be analyzed.
        String document = "My SSN is 859-98-0987";
        PiiEntityCollection piiEntityCollection = client.recognizePiiEntities(document);
        System.out.printf("Redacted Text: %s%n", piiEntityCollection.getRedactedText());
        piiEntityCollection.forEach(entity -> System.out.printf(
            "Recognized Personally Identifiable Information entity: %s, entity category: %s, entity subcategory: %s,"
                + " confidence score: %f.%n",
            entity.getText(), entity.getCategory(), entity.getSubcategory(), entity.getConfidenceScore()));
    }
}

輸出

Redacted Text: My SSN is ***********
Recognized Personally Identifiable Information entity: 859-98-0987, entity category: USSocialSecurityNumber, entity subcategory: null, confidence score: 0.650000.

參考文件 | 更多樣本 | 套件 (npm) | 程式庫原始程式碼

使用本快速入門,透過適用於 Node.js 的用戶端程式庫,建立個人識別資訊 (PII) 偵測應用程式。 在下列範例中,您會建立 JavaScript 應用程式,以便識別文字中辨識的敏感性資訊

必要條件

設定

建立環境變數

您的應用程式必須經過驗證後,才能傳送 API 要求。 在生產環境中,請運用安全的方式來儲存和存取您的登入資訊。 在此範例中,您會在執行應用程式的本機電腦上將認證寫入環境變數。

若要設定語言資源金鑰的環境變數,請開啟主控台視窗,並遵循作業系統和開發環境的指示進行。

  • 若要設定 LANGUAGE_KEY 環境變數,請將 your-key 取代為您資源的其中一個金鑰。
  • 若要設定 LANGUAGE_ENDPOINT 環境變數,請將 your-endpoint 取代為您資源的端點。

重要

如果您使用 API 金鑰,請將其安全地儲存在別處,例如 Azure Key Vault。 請勿在程式碼中直接包含 API 金鑰,且切勿公開張貼金鑰。

如需 AI 服務安全性的詳細資訊,請參閱驗證對 Azure AI 服務的要求 (英文)。

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

注意

如果您只需要存取目前執行中主控台的環境變數,您可以使用 set (而不是 setx) 來設定環境變數。

新增環境變數之後,您可能需要重新啟動任何需要讀取環境變數的執行中程式,包括主控台視窗。 例如,如果您使用 Visual Studio 做為編輯器,請在執行範例前重新啟動 Visual Studio。

建立新的 Node.js 應用程式

在主控台視窗 (例如 cmd、PowerShell 或 Bash) 中,為您的應用程式建立新的目錄,並瀏覽至該目錄。

mkdir myapp 

cd myapp

執行命令 npm init,以使用 package.json 檔案建立節點應用程式。

npm init

安裝用戶端程式庫

安裝 npm 套件:

npm install @azure/ai-text-analytics

程式碼範例

開啟檔案,並複製下列程式碼。 然後執行程式碼。

"use strict";

const { TextAnalyticsClient, AzureKeyCredential } = require("@azure/ai-text-analytics");

// This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
const key = process.env.LANGUAGE_KEY;
const endpoint = process.env.LANGUAGE_ENDPOINT;

//an example document for pii recognition
const documents = [ "The employee's phone number is (555) 555-5555." ];

async function main() {
    console.log(`PII recognition sample`);
  
    const client = new TextAnalyticsClient(endpoint, new AzureKeyCredential(key));
  
    const documents = ["My phone number is 555-555-5555"];
  
    const [result] = await client.analyze("PiiEntityRecognition", documents, "en");
  
    if (!result.error) {
      console.log(`Redacted text: "${result.redactedText}"`);
      console.log("Pii Entities: ");
      for (const entity of result.entities) {
        console.log(`\t- "${entity.text}" of type ${entity.category}`);
      }
    }
}

main().catch((err) => {
console.error("The sample encountered an error:", err);
});

輸出

PII recognition sample
Redacted text: "My phone number is ************"
Pii Entities:
        - "555-555-5555" of type PhoneNumber

參考文件 | 更多樣本 | 套件 (PyPi) | 程式庫原始程式碼

使用本快速入門,透過適用於 Python 的用戶端程式庫,建立個人識別資訊 (PII) 偵測應用程式。 在下列範例中,您會建立 Python 應用程式,以便識別文字中辨識的敏感性資訊

必要條件

設定

建立環境變數

您的應用程式必須經過驗證後,才能傳送 API 要求。 在生產環境中,請運用安全的方式來儲存和存取您的登入資訊。 在此範例中,您會在執行應用程式的本機電腦上將認證寫入環境變數。

若要設定語言資源金鑰的環境變數,請開啟主控台視窗,並遵循作業系統和開發環境的指示進行。

  • 若要設定 LANGUAGE_KEY 環境變數,請將 your-key 取代為您資源的其中一個金鑰。
  • 若要設定 LANGUAGE_ENDPOINT 環境變數,請將 your-endpoint 取代為您資源的端點。

重要

如果您使用 API 金鑰,請將其安全地儲存在別處,例如 Azure Key Vault。 請勿在程式碼中直接包含 API 金鑰,且切勿公開張貼金鑰。

如需 AI 服務安全性的詳細資訊,請參閱驗證對 Azure AI 服務的要求 (英文)。

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

注意

如果您只需要存取目前執行中主控台的環境變數,您可以使用 set (而不是 setx) 來設定環境變數。

新增環境變數之後,您可能需要重新啟動任何需要讀取環境變數的執行中程式,包括主控台視窗。 例如,如果您使用 Visual Studio 做為編輯器,請在執行範例前重新啟動 Visual Studio。

安裝用戶端程式庫

安裝 Python 之後,您可以透過以下項目安裝用戶端程式庫:

pip install azure-ai-textanalytics==5.2.0

程式碼範例

建立新的 Python 檔案,並複製下列程式碼。 然後執行程式碼。

# This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
language_key = os.environ.get('LANGUAGE_KEY')
language_endpoint = os.environ.get('LANGUAGE_ENDPOINT')

from azure.ai.textanalytics import TextAnalyticsClient
from azure.core.credentials import AzureKeyCredential

# Authenticate the client using your key and endpoint 
def authenticate_client():
    ta_credential = AzureKeyCredential(language_key)
    text_analytics_client = TextAnalyticsClient(
            endpoint=language_endpoint, 
            credential=ta_credential)
    return text_analytics_client

client = authenticate_client()

# Example method for detecting sensitive information (PII) from text 
def pii_recognition_example(client):
    documents = [
        "The employee's SSN is 859-98-0987.",
        "The employee's phone number is 555-555-5555."
    ]
    response = client.recognize_pii_entities(documents, language="en")
    result = [doc for doc in response if not doc.is_error]
    for doc in result:
        print("Redacted Text: {}".format(doc.redacted_text))
        for entity in doc.entities:
            print("Entity: {}".format(entity.text))
            print("\tCategory: {}".format(entity.category))
            print("\tConfidence Score: {}".format(entity.confidence_score))
            print("\tOffset: {}".format(entity.offset))
            print("\tLength: {}".format(entity.length))
pii_recognition_example(client)

輸出

Redacted Text: The ********'s SSN is ***********.
Entity: employee
        Category: PersonType
        Confidence Score: 0.97
        Offset: 4
        Length: 8
Entity: 859-98-0987
        Category: USSocialSecurityNumber
        Confidence Score: 0.65
        Offset: 22
        Length: 11
Redacted Text: The ********'s phone number is ************.
Entity: employee
        Category: PersonType
        Confidence Score: 0.96
        Offset: 4
        Length: 8
Entity: 555-555-5555
        Category: PhoneNumber
        Confidence Score: 0.8
        Offset: 31
        Length: 12

參考文件

使用本快速入門,利用 REST API 傳送個人識別資訊 (PII) 偵測要求。 在下列範例中,您將使用 cURL 來識別文字中已辨識的敏感性資訊

必要條件

設定

建立環境變數

您的應用程式必須經過驗證後,才能傳送 API 要求。 在生產環境中,請運用安全的方式來儲存和存取您的登入資訊。 在此範例中,您會在執行應用程式的本機電腦上將認證寫入環境變數。

若要設定語言資源金鑰的環境變數,請開啟主控台視窗,並遵循作業系統和開發環境的指示進行。

  • 若要設定 LANGUAGE_KEY 環境變數,請將 your-key 取代為您資源的其中一個金鑰。
  • 若要設定 LANGUAGE_ENDPOINT 環境變數,請將 your-endpoint 取代為您資源的端點。

重要

如果您使用 API 金鑰,請將其安全地儲存在別處,例如 Azure Key Vault。 請勿在程式碼中直接包含 API 金鑰,且切勿公開張貼金鑰。

如需 AI 服務安全性的詳細資訊,請參閱驗證對 Azure AI 服務的要求 (英文)。

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

注意

如果您只需要存取目前執行中主控台的環境變數,您可以使用 set (而不是 setx) 來設定環境變數。

新增環境變數之後,您可能需要重新啟動任何需要讀取環境變數的執行中程式,包括主控台視窗。 例如,如果您使用 Visual Studio 做為編輯器,請在執行範例前重新啟動 Visual Studio。

使用範例要求本文來建立 JSON 檔案

在程式碼編輯器中,建立名為 test_pii_payload.json 的新檔案,並複製下列 JSON 範例。 在下一個步驟中,會將此範例要求傳送至 API。

{
    "kind": "PiiEntityRecognition",
    "parameters": {
        "modelVersion": "latest"
    },
    "analysisInput":{
        "documents":[
            {
                "id":"1",
                "language": "en",
                "text": "Call our office at 312-555-1234, or send an email to support@contoso.com"
            }
        ]
    }
}
'

test_pii_payload.json 儲存在電腦上的某個位置。 例如,您的桌面。

傳送個人識別資訊 (PII) 偵測 API 要求

使用下列命令,透過您正在使用的程式來傳送 API 要求。 將命令複製到終端機,然後執行該命令。

parameter 描述
-X POST <endpoint> 指定用於存取 API 的端點。
-H Content-Type: application/json 用於傳送 JSON 資料的內容類型。
-H "Ocp-Apim-Subscription-Key:<key> 指定用於存取 API 的金鑰。
-d <documents> JSON,其中包含您想要傳送的文件。

C:\Users\<myaccount>\Desktop\test_pii_payload.json 取代為您在上一個步驟中所建立範例 JSON 要求檔案的位置。

命令提示字元

curl -X POST "%LANGUAGE_ENDPOINT%/language/:analyze-text?api-version=2022-05-01" ^
-H "Content-Type: application/json" ^
-H "Ocp-Apim-Subscription-Key: %LANGUAGE_KEY%" ^
-d "@C:\Users\<myaccount>\Desktop\test_pii_payload.json"

PowerShell

curl.exe -X POST $env:LANGUAGE_ENDPOINT/language/:analyze-text?api-version=2022-05-01 `
-H "Content-Type: application/json" `
-H "Ocp-Apim-Subscription-Key: $env:LANGUAGE_KEY" `
-d "@C:\Users\<myaccount>\Desktop\test_pii_payload.json"

JSON 回應

{
	"kind": "PiiEntityRecognitionResults",
	"results": {
		"documents": [{
			"redactedText": "Call our office at ************, or send an email to *******************",
			"id": "1",
			"entities": [{
				"text": "312-555-1234",
				"category": "PhoneNumber",
				"offset": 19,
				"length": 12,
				"confidenceScore": 0.8
			}, {
				"text": "support@contoso.com",
				"category": "Email",
				"offset": 53,
				"length": 19,
				"confidenceScore": 0.8
			}],
			"warnings": []
		}],
		"errors": [],
		"modelVersion": "2021-01-15"
	}
}

清除資源

如果您想要清除和移除 Azure AI 服務訂用帳戶,則可以刪除資源或資源群組。 刪除資源群組也會刪除與其相關聯的任何其他資源。

下一步