使用程式代碼優化監視和分析運行時間行為
程式代碼優化是 Azure 應用程式 Insights 中的 AI 型服務,可與適用於 .NET 的 Application Insights Profiler 搭配運作,以偵測程式代碼層級的 CPU 和記憶體使用量效能問題,並提供有關如何修正它們的建議。 程式碼最佳化會藉由下列方式識別這些 CPU 和記憶體瓶頸:
- 分析應用程式的執行階段行為。
- 比較行為與效能工程最佳做法。
使用從生產環境收集的即時效能資料和深入解析,做出明智的決策並將您的程式碼最佳化。
示範影片
使用程式碼最佳化的需求
在應用程式中使用程式碼最佳化之前:
- 啟用 .NET Profiler。
- 驗證應用程式:
- 是 .NET。
- 使用 Application Insights。
- 收集設定檔。
.NET Profiler 與程式代碼優化
.NET Profiler 和程式碼優化會共同運作,以提供效能問題偵測的整體方法。
.NET Profiler
.NET Profiler 著重於追蹤特定要求,減少到毫秒。 它可以提供您應用程式內問題的絕佳「整體」檢視,以及解決問題的一般最佳做法。
程式碼最佳化
程式代碼優化會 分析 .NET Profiler 所收集的分析數據。 當適用於 .NET 的 Profiler 將數據上傳至 Application Insights 時,我們的機器學習模型會分析一些數據,以找出應用程式程式代碼可以優化的位置。 程式碼最佳化:
- 顯示一段時間內收集到的彙總資料。
- 在應用程式程式碼中使用方法和函式連接資料。
- 藉由找出程式碼中的瓶頸來消弭問題根源。
成本和額外負荷
啟用 .NET Profiler 之後,系統會自動產生程式代碼優化。 分析效能問題並產生效能建議時,不會產生額外的成本。 某些功能 (例如程式碼層級修正建議) 需要適用於 GitHub 的 Copilot 和/或適用於 Azure 的 Copilot。
支援的區域
程式碼最佳化可在與 Application Insights 相同的區域中使用。 您可以使用下列命令來檢查可用的區域:
az account list-locations -o table
您可以使用連接字串來設定明確的區域。 透過範例深入了解連線字串。
下一步
相關連結
在應用程式中啟用下列功能,以開始使用程式碼最佳化:
遇到問題了嗎? 請查看疑難排解指南