共用方式為


Window 函式

適用於:核取記號為「是」Databricks SQL 核取記號為「是」Databricks Runtime

在一組數據列上運作的函式,稱為「window」,並根據數據列群組計算每個數據列的傳回值。 Window 函式可用於處理工作,例如計算移動平均、計算累計統計數據,或存取指定目前數據列相對位置的數據列值。

語法

function OVER { window_name | ( window_name ) | window_spec }

function
  { ranking_function | analytic_function | aggregate_function }

over_clause
  OVER { window_name | ( window_name ) | window_spec }

window_spec
  ( [ PARTITION BY partition [ , ... ] ] [ order_by ] [ window_frame ] )

Parameters

  • 函數

    在 window上運作的函式。 函式的不同類別支援 window 規格的不同組態。

    • ranking_function

      任何 排名 window 函式都會

      如果指定window_spec必須包含 子句,但不能包含 window_frame 子句。

    • analytic_function

      任何 分析 window 函式

    • aggregate_function

      任何聚合函數

      如果指定,函式不得包含 FILTER 子句。

  • window_name

    識別 查詢所定義的 window 規格。

  • window_spec

    這個子句會定義如何將數據列分組、在群組內排序,以及函式在 partition 內作用於哪些數據列。

    • partition

      一或多個表達式,用來指定定義函式運作範圍的數據列群組。 如果未指定任何 PARTITION 子句,則 partition 包含所有行。

    • order_by

      ORDER BY 子句 指定 partition中列的順序。

    • window_frame

      window frame 子句 指定為在 partition 中匯總或分析函式運行的數據列的滑動子集。

您可以將 SORT BY 指定為 ORDER BY的別名。

您也可以將 DISTRIBUTE BY 指定為 PARTITION BY 的別名。 在沒有 ORDER BY的情況下,您可以使用 CLUSTER BY 作為 PARTITION BY 的別名。

範例

> CREATE TABLE employees
   (name STRING, dept STRING, salary INT, age INT);
> INSERT INTO employees
   VALUES ('Lisa', 'Sales', 10000, 35),
          ('Evan', 'Sales', 32000, 38),
          ('Fred', 'Engineering', 21000, 28),
          ('Alex', 'Sales', 30000, 33),
          ('Tom', 'Engineering', 23000, 33),
          ('Jane', 'Marketing', 29000, 28),
          ('Jeff', 'Marketing', 35000, 38),
          ('Paul', 'Engineering', 29000, 23),
          ('Chloe', 'Engineering', 23000, 25);

> SELECT name, dept, salary, age FROM employees;
 Chloe Engineering 23000   25
  Fred Engineering 21000   28
  Paul Engineering 29000   23
 Helen   Marketing 29000   40
   Tom Engineering 23000   33
  Jane   Marketing 29000   28
  Jeff   Marketing 35000   38
  Evan       Sales 32000   38
  Lisa       Sales 10000   35
  Alex       Sales 30000   33

> SELECT name,
         dept,
         RANK() OVER (PARTITION BY dept ORDER BY salary) AS rank
  FROM employees;
  Lisa       Sales  10000    1
  Alex       Sales  30000    2
  Evan       Sales  32000    3
  Fred Engineering  21000    1
   Tom Engineering  23000    2
 Chloe Engineering  23000    2
  Paul Engineering  29000    4
 Helen   Marketing  29000    1
  Jane   Marketing  29000    1
  Jeff   Marketing  35000    3

> SELECT name,
         dept,
         DENSE_RANK() OVER (PARTITION BY dept ORDER BY salary
                            ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS dense_rank
    FROM employees;
  Lisa       Sales  10000          1
  Alex       Sales  30000          2
  Evan       Sales  32000          3
  Fred Engineering  21000          1
   Tom Engineering  23000          2
 Chloe Engineering  23000          2
  Paul Engineering  29000          3
 Helen   Marketing  29000          1
  Jane   Marketing  29000          1
  Jeff   Marketing  35000          2

> SELECT name,
         dept,
         age,
         CUME_DIST() OVER (PARTITION BY dept ORDER BY age
                           RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cume_dist
    FROM employees;
  Alex       Sales     33 0.3333333333333333
  Lisa       Sales     35 0.6666666666666666
  Evan       Sales     38                1.0
  Paul Engineering     23               0.25
 Chloe Engineering     25               0.50
  Fred Engineering     28               0.75
   Tom Engineering     33                1.0
  Jane   Marketing     28 0.3333333333333333
  Jeff   Marketing     38 0.6666666666666666
 Helen   Marketing     40                1.0

> SELECT name,
         dept,
         salary,
         MIN(salary) OVER (PARTITION BY dept ORDER BY salary) AS min
    FROM employees;
  Lisa       Sales  10000 10000
  Alex       Sales  30000 10000
  Evan       Sales  32000 10000
 Helen   Marketing  29000 29000
  Jane   Marketing  29000 29000
  Jeff   Marketing  35000 29000
  Fred Engineering  21000 21000
   Tom Engineering  23000 21000
 Chloe Engineering  23000 21000
  Paul Engineering  29000 21000

> SELECT name,
         salary,
         LAG(salary) OVER (PARTITION BY dept ORDER BY salary) AS lag,
         LEAD(salary, 1, 0) OVER (PARTITION BY dept ORDER BY salary) AS lead
    FROM employees;
  Lisa       Sales  10000 NULL  30000
  Alex       Sales  30000 10000 32000
  Evan       Sales  32000 30000     0
  Fred Engineering  21000  NULL 23000
 Chloe Engineering  23000 21000 23000
   Tom Engineering  23000 23000 29000
  Paul Engineering  29000 23000     0
 Helen   Marketing  29000  NULL 29000
  Jane   Marketing  29000 29000 35000
  Jeff   Marketing  35000 29000     0