將計算管理升級至 v2
在 v2 開發平臺中,計算管理在功能上會保持不變。
本文提供 SDK v1 和 SDK v2 中案例的比較。
建立計算執行個體
SDK v1
import datetime import time from azureml.core.compute import ComputeTarget, ComputeInstance from azureml.core.compute_target import ComputeTargetException # Compute Instances need to have a unique name across the region. # Here, we create a unique name with current datetime ci_basic_name = "basic-ci" + datetime.datetime.now().strftime("%Y%m%d%H%M") compute_config = ComputeInstance.provisioning_configuration( vm_size='STANDARD_DS3_V2' ) instance = ComputeInstance.create(ws, ci_basic_name , compute_config) instance.wait_for_completion(show_output=True)
SDK v2
# Compute Instances need to have a unique name across the region. # Here, we create a unique name with current datetime from azure.ai.ml.entities import ComputeInstance, AmlCompute import datetime ci_basic_name = "basic-ci" + datetime.datetime.now().strftime("%Y%m%d%H%M") ci_basic = ComputeInstance(name=ci_basic_name, size="STANDARD_DS3_v2", idle_time_before_shutdown_minutes="30") ml_client.begin_create_or_update(ci_basic)
建立計算叢集
SDK v1
from azureml.core.compute import ComputeTarget, AmlCompute from azureml.core.compute_target import ComputeTargetException # Choose a name for your CPU cluster cpu_cluster_name = "cpucluster" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_DS3_V2', max_nodes=4) cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config) cpu_cluster.wait_for_completion(show_output=True)
SDK v2
from azure.ai.ml.entities import AmlCompute cpu_cluster_name = "cpucluster" cluster_basic = AmlCompute( name=cpu_cluster_name, type="amlcompute", size="STANDARD_DS3_v2", max_instances=4 ) ml_client.begin_create_or_update(cluster_basic)
SDK v1 和 SDK v2 中的主要功能對應
SDK v1 中的功能 | SDK v2 中的粗略對應 |
---|---|
SDK v1 中的方法/API(使用參考文件的連結) | SDK v2 中的方法/API(使用參考文件的連結) |