衍生的數學函式 (Visual Basic)
更新:2007 年 11 月
以下是一個非內建 (Non-Intrinsic) 的數學函式清單,這些函式可以衍生自內建 (Intrinsic) 數學函式:
函式 |
衍生的相等函式 |
---|---|
正割函數 (Secant) (Sec(x)) |
1 / Cos(x) |
餘割函數 (Cosecant) (Csc(x)) |
1 / Sin(x) |
餘切函數 (Cotangent) (Ctan(x)) |
1 / Tan(x) |
Inverse Sine (反正弦) (Asin(x)) |
Atan(x / Sqrt(-x * x + 1)) |
Inverse Cosine (反餘弦) (Acos(x)) |
Atan(-x / Sqrt(-x * x + 1)) + 2 * Atan(1) |
Inverse Secant (反正割) (Asec(x)) |
2 * Atan(1) – Atan(Sign(x) / Sqrt(x * x – 1)) |
Inverse Cosecant (反餘割) (Acsc(x)) |
Atan(Sign(x) / Sqrt(x * x – 1)) |
Inverse Cotangent (反餘切) (Acot(x)) |
2 * Atan(1) - Atan(x) |
Hyperbolic Sine (雙曲線正弦) (Sinh(x)) |
(Exp(x) – Exp(-x)) / 2 |
Hyperbolic Cosine (雙曲線餘弦) (Cosh(x)) |
(Exp(x) + Exp(-x)) / 2 |
Hyperbolic Tangent (雙曲線正切) (Tanh(x)) |
(Exp(x) – Exp(-x)) / (Exp(x) + Exp(-x)) |
Hyperbolic Secant (雙曲線正割) (Sech(x)) |
2 / (Exp(x) + Exp(-x)) |
Hyperbolic Cosecant (雙曲線餘割) (Csch(x)) |
2 / (Exp(x) – Exp(-x)) |
Hyperbolic Cotangent (雙曲線餘切) (Coth(x)) |
(Exp(x) + Exp(-x)) / (Exp(x) – Exp(-x)) |
Inverse Hyperbolic Sine (反雙曲線正弦) (Asinh(x)) |
Log(x + Sqrt(x * x + 1)) |
Inverse Hyperbolic Cosine (反雙曲線餘弦) (Acosh(x)) |
Log(x + Sqrt(x * x – 1)) |
Inverse Hyperbolic Tangent (反雙曲線正切) (Atanh(x)) |
Log((1 + x) / (1 – x)) / 2 |
Inverse Hyperbolic Secant (反雙曲線正割) (AsecH(x)) |
Log((Sqrt(-x * x + 1) + 1) / x) |
Inverse Hyperbolic Cosecant (反雙曲線餘割) (Acsch(x)) |
Log((Sign(x) * Sqrt(x * x + 1) + 1) / x) |
Inverse Hyperbolic Cotangent (反雙曲線餘切) (Acoth(x)) |
Log((x + 1) / (x – 1)) / 2 |
需求
命名空間:Math
**組件:**mscorlib (在 mscorlib.dll 中)