BatchEndpointOperations Class
BatchEndpointOperations.
You should not instantiate this class directly. Instead, you should create an MLClient instance that instantiates it for you and attaches it as an attribute.
- Inheritance
-
azure.ai.ml._scope_dependent_operations._ScopeDependentOperationsBatchEndpointOperations
Constructor
BatchEndpointOperations(operation_scope: OperationScope, operation_config: OperationConfig, service_client_10_2023: AzureMachineLearningServices, all_operations: OperationsContainer, credentials: TokenCredential | None = None, **kwargs: Any)
Parameters
Name | Description |
---|---|
operation_scope
Required
|
<xref:azure.ai.ml._scope_dependent_operations.OperationScope>
Scope variables for the operations classes of an MLClient object. |
operation_config
Required
|
<xref:azure.ai.ml._scope_dependent_operations.OperationConfig>
Common configuration for operations classes of an MLClient object. |
service_client_10_2023
Required
|
<xref:<xref:azure.ai.ml._restclient.v2023_10_01._azure_machine_learning_workspaces. AzureMachineLearningWorkspaces>>
Service client to allow end users to operate on Azure Machine Learning Workspace resources. |
all_operations
Required
|
<xref:azure.ai.ml._scope_dependent_operations.OperationsContainer>
All operations classes of an MLClient object. |
credentials
|
Credential to use for authentication. Default value: None
|
Methods
begin_create_or_update |
Create or update a batch endpoint. |
begin_delete |
Delete a batch Endpoint. |
get |
Get a Endpoint resource. |
invoke |
Invokes the batch endpoint with the provided payload. |
list |
List endpoints of the workspace. |
list_jobs |
List jobs under the provided batch endpoint deployment. This is only valid for batch endpoint. |
begin_create_or_update
Create or update a batch endpoint.
begin_create_or_update(endpoint: BatchEndpoint) -> LROPoller[BatchEndpoint]
Parameters
Name | Description |
---|---|
endpoint
Required
|
The endpoint entity. |
Returns
Type | Description |
---|---|
A poller to track the operation status. |
Examples
Create endpoint example.
from azure.ai.ml.entities import BatchEndpoint
endpoint_example = BatchEndpoint(name=endpoint_name_2)
ml_client.batch_endpoints.begin_create_or_update(endpoint_example)
begin_delete
Delete a batch Endpoint.
begin_delete(name: str) -> LROPoller[None]
Parameters
Name | Description |
---|---|
name
Required
|
Name of the batch endpoint. |
Returns
Type | Description |
---|---|
A poller to track the operation status. |
Examples
Delete endpoint example.
ml_client.batch_endpoints.begin_delete(endpoint_name)
get
Get a Endpoint resource.
get(name: str) -> BatchEndpoint
Parameters
Name | Description |
---|---|
name
Required
|
Name of the endpoint. |
Returns
Type | Description |
---|---|
Endpoint object retrieved from the service. |
Examples
Get endpoint example.
ml_client.batch_endpoints.get(endpoint_name)
invoke
Invokes the batch endpoint with the provided payload.
invoke(endpoint_name: str, *, deployment_name: str | None = None, inputs: Dict[str, Input] | None = None, **kwargs: Any) -> BatchJob
Parameters
Name | Description |
---|---|
endpoint_name
Required
|
The endpoint name. |
Keyword-Only Parameters
Name | Description |
---|---|
deployment_name
|
(Optional) The name of a specific deployment to invoke. This is optional. By default requests are routed to any of the deployments according to the traffic rules. |
inputs
|
(Optional) A dictionary of existing data asset, public uri file or folder to use with the deployment |
Returns
Type | Description |
---|---|
The invoked batch deployment job. |
Exceptions
Type | Description |
---|---|
Raised if deployment cannot be successfully validated. Details will be provided in the error message. |
|
Raised if BatchEndpoint assets (e.g. Data, Code, Model, Environment) cannot be successfully validated. Details will be provided in the error message. |
|
Raised if BatchEndpoint model cannot be successfully validated. Details will be provided in the error message. |
|
Raised if local path provided points to an empty directory. |
Examples
Invoke endpoint example.
ml_client.batch_endpoints.invoke(endpoint_name_2)
list
List endpoints of the workspace.
list() -> ItemPaged[BatchEndpoint]
Returns
Type | Description |
---|---|
A list of endpoints |
Examples
List example.
ml_client.batch_endpoints.list()
list_jobs
List jobs under the provided batch endpoint deployment. This is only valid for batch endpoint.
list_jobs(endpoint_name: str) -> ItemPaged[BatchJob]
Parameters
Name | Description |
---|---|
endpoint_name
Required
|
The endpoint name |
Returns
Type | Description |
---|---|
List of jobs |
Examples
List jobs example.
ml_client.batch_endpoints.list_jobs(endpoint_name_2)