共用方式為


MetricObjective 類別

定義從計量到其目標的對應。

目標是 (回歸和分類) 最大化或最小化。

繼承
builtins.object
MetricObjective

建構函式

MetricObjective()

屬性

Classification

Classification = {'AUC_binary': 'maximize', 'AUC_macro': 'maximize', 'AUC_micro': 'maximize', 'AUC_weighted': 'maximize', 'accuracy': 'maximize', 'accuracy_table': 'NA', 'average_precision_score_binary': 'maximize', 'average_precision_score_macro': 'maximize', 'average_precision_score_micro': 'maximize', 'average_precision_score_weighted': 'maximize', 'balanced_accuracy': 'maximize', 'confusion_matrix': 'NA', 'f1_score_binary': 'maximize', 'f1_score_macro': 'maximize', 'f1_score_micro': 'maximize', 'f1_score_weighted': 'maximize', 'log_loss': 'minimize', 'matthews_correlation': 'maximize', 'norm_macro_recall': 'maximize', 'precision_score_binary': 'maximize', 'precision_score_macro': 'maximize', 'precision_score_micro': 'maximize', 'precision_score_weighted': 'maximize', 'recall_score_binary': 'maximize', 'recall_score_macro': 'maximize', 'recall_score_micro': 'maximize', 'recall_score_weighted': 'maximize', 'train time': 'minimize', 'weighted_accuracy': 'maximize'}

Forecast

Forecast = {'forecast_adjustment_residuals': 'NA', 'forecast_mean_absolute_percentage_error': 'NA', 'forecast_residuals': 'NA', 'forecast_symmetric_mean_absolute_percentage_error': 'NA', 'forecast_table': 'NA'}

ImageClassification

ImageClassification = {'accuracy': 'maximize'}

ImageClassificationMultiLabel

ImageClassificationMultiLabel = {'iou': 'maximize'}

ImageObjectDetection

ImageObjectDetection = {'mean_average_precision': 'maximize'}

Regression

Regression = {'explained_variance': 'maximize', 'mean_absolute_error': 'minimize', 'mean_absolute_percentage_error': 'minimize', 'median_absolute_error': 'minimize', 'normalized_mean_absolute_error': 'minimize', 'normalized_median_absolute_error': 'minimize', 'normalized_root_mean_squared_error': 'minimize', 'normalized_root_mean_squared_log_error': 'minimize', 'predicted_true': 'NA', 'r2_score': 'maximize', 'residuals': 'NA', 'root_mean_squared_error': 'minimize', 'root_mean_squared_log_error': 'minimize', 'spearman_correlation': 'maximize', 'symmetric_mean_absolute_percentage_error': 'minimize', 'train time': 'minimize'}

TextClassification

TextClassification = {'AUC_weighted': 'maximize', 'accuracy': 'maximize', 'precision_score_weighted': 'maximize'}

TextClassificationMultilabel

TextClassificationMultilabel = {'accuracy': 'maximize'}

TextNer

TextNer = {'accuracy': 'maximize'}