StoredProcedure:SQL Server 預存程序:類別產生器
StoredProcedure
:產生 SQLServer 預存程序物件和包含查詢的選擇性 .sql 檔案,以建立預存程序。 StoredProcedure$registrationVec 包含代表建立預存程序所需之查詢的字串
使用方式
StoredProcedure (func, spName, ..., filePath = NULL ,dbName = NULL,
connectionString = NULL, batchSeparator = "GO")
引數
func
有效的 R 函數或有效的 R 函數字串名稱:1) 函數依賴的所有變數都應該在函數內定義,或以輸入參數的形式傳入。 輸入參數中最多可有 1 個資料框架 2) 函數應該傳回資料框架、具名清單或 Null。 清單中最多可有一個資料框架。
spName
字元字串,指定預存程序的名稱。
...
預存程式的選擇性輸入和輸出參數,必須是 InputData、InputParameter 或 outputParameter 類別的物件。
filePath
字元字串,指定要建立 .sql 之目錄的路徑。 如果為 Null,則不會產生 .sql 檔案。
dbName
字元字串,指定要使用之資料庫的名稱。
connectionString
字元字串,指定連接字串。
batchSeparator
所需之 SQL 批次分隔符號 (只有定義 filePath 後才相關)
值
SQLServer 預存程序物件
範例
## Not run:
############# Example 1 #############
# etl1 - reads from and write directly to the database
etl1 <- function() {
# The query to get the data
qq <- "select top 10000 ArrDelay,CRSDepTime,DayOfWeek from AirlineDemoSmall"
# The connection string
conStr <- paste("Driver={ODBC Driver 13 for SQL Server};Server=.;Database=RevoTestDB;",
"Trusted_Connection=Yes;", sep = "")
# The data source - retrieves the data from the database
dsSqls <- RxSqlServerData(sqlQuery=qq, connectionString=conStr)
# The destination data source
dsSqls2 <- RxSqlServerData(table ="cleanData", connectionString = conStr)
# A transformation function
transformFunc <- function(data) {
data$CRSDepHour <- as.integer(trunc(data$CRSDepTime))
return(data)
}
# The transformation variables
transformVars <- c("CRSDepTime")
rxDataStep(inData = dsSqls,
outFile = dsSqls2,
transformFunc=transformFunc,
transformVars=transformVars,
overwrite = TRUE)
return(NULL)
}
# Create a StoredProcedure object
sp_ds_ds <- StoredProcedure(etl1, "spTest",
filePath = ".", dbName ="RevoTestDB")
# Define a connection string
conStr <- paste("Driver={ODBC Driver 13 for SQL Server};Server=.;Database=RevoTestDB;",
"Trusted_Connection=Yes;", sep = "")
# register the stored procedure with a database
registerStoredProcedure(sp_ds_ds, conStr)
# execute the stored procedure
executeStoredProcedure(sp_ds_ds, connectionString = conStr)
############# Example 2 #############
# train 1 takes a data frame with clean data and outputs a model
train1 <- function(in_df) {
in_df[,"DayOfWeek"] <- factor(in_df[,"DayOfWeek"], levels=c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday"))
# The model formula
formula <- ArrDelay ~ CRSDepTime + DayOfWeek + CRSDepHour:DayOfWeek
# Train the model
rxSetComputeContext("local")
mm <- rxLinMod(formula, data=in_df)
mm <- rxSerializeModel(mm)
return(list("mm" = mm))
}
# create InputData Object for an input parameter that is a data frame
# note: if the input parameter is not a data frame use InputParameter object
id <- InputData(name = "in_df",
defaultQuery = paste0("select top 10000 ArrDelay,CRSDepTime,",
"DayOfWeek,CRSDepHour from cleanData"))
# create an OutputParameter object for the variable inside the return list
# note: if that variable is a data frame use OutputData object
out <- OutputParameter("mm", "raw")
# connections string
conStr <- paste0("Driver={ODBC Driver 13 for SQL Server};Server=.;Database=RevoTestDB;",
"Trusted_Connection=Yes;")
# create the stored procedure object
sp_df_op <- StoredProcedure("train1", "spTest1", id, out,
filePath = ".")
# register the stored procedure with the database
registerStoredProcedure(sp_df_op, conStr)
# get the linear model
model <- executeStoredProcedure(sp_df_op, connectionString = conStr)
mm <- rxUnserializeModel(model$params$op1)
## End(Not run)