Freigeben über


NormalizationCatalog.NormalizeLogMeanVariance Methode

Definition

Überlädt

NormalizeLogMeanVariance(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean)

Erstellen Sie einen NormalizingEstimator, der basierend auf dem berechneten Mittelwert und der Varianz des Logarithmus der Daten normalisiert.

NormalizeLogMeanVariance(TransformsCatalog, InputOutputColumnPair[], Boolean, Int64, Boolean)

Erstellen Sie einen NormalizingEstimator, der basierend auf dem berechneten Mittelwert und der Varianz des Logarithmus der Daten normalisiert.

NormalizeLogMeanVariance(TransformsCatalog, String, String, Int64, Boolean)

Erstellen Sie einen NormalizingEstimator, der basierend auf dem berechneten Mittelwert und der Varianz des Logarithmus der Daten normalisiert.

NormalizeLogMeanVariance(TransformsCatalog, String, Boolean, String, Int64, Boolean)

Erstellen Sie einen NormalizingEstimator, der basierend auf dem berechneten Mittelwert und der Varianz des Logarithmus der Daten normalisiert.

NormalizeLogMeanVariance(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean)

Erstellen Sie einen NormalizingEstimator, der basierend auf dem berechneten Mittelwert und der Varianz des Logarithmus der Daten normalisiert.

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeLogMeanVariance (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, long maximumExampleCount = 1000000000, bool useCdf = true);
static member NormalizeLogMeanVariance : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * int64 * bool -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeLogMeanVariance (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional maximumExampleCount As Long = 1000000000, Optional useCdf As Boolean = true) As NormalizingEstimator

Parameter

catalog
TransformsCatalog

Der Transformationskatalog

columns
InputOutputColumnPair[]

Die Paare der Eingabe- und Ausgabespalten. Die Eingabespalten müssen vom Datentyp SingleDouble oder einem bekannten Vektor dieser Typen sein. Der Datentyp für die Ausgabespalte entspricht der zugeordneten Eingabespalte.

maximumExampleCount
Int64

Maximale Anzahl von Beispielen, die zum Trainieren des Normalizers verwendet werden.

useCdf
Boolean

Gibt an, ob CDF als Ausgabe verwendet werden soll.

Gibt zurück

Gilt für:

NormalizeLogMeanVariance(TransformsCatalog, InputOutputColumnPair[], Boolean, Int64, Boolean)

Erstellen Sie einen NormalizingEstimator, der basierend auf dem berechneten Mittelwert und der Varianz des Logarithmus der Daten normalisiert.

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeLogMeanVariance (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, bool fixZero, long maximumExampleCount = 1000000000, bool useCdf = true);
static member NormalizeLogMeanVariance : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * bool * int64 * bool -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeLogMeanVariance (catalog As TransformsCatalog, columns As InputOutputColumnPair(), fixZero As Boolean, Optional maximumExampleCount As Long = 1000000000, Optional useCdf As Boolean = true) As NormalizingEstimator

Parameter

catalog
TransformsCatalog

Der Transformationskatalog

columns
InputOutputColumnPair[]

Die Paare der Eingabe- und Ausgabespalten. Die Eingabespalten müssen vom Datentyp SingleDouble oder einem bekannten Vektor dieser Typen sein. Der Datentyp für die Ausgabespalte entspricht der zugeordneten Eingabespalte.

fixZero
Boolean

Gibt an, ob null bis null zugeordnet werden soll, wobei die Sparsität erhalten bleibt.

maximumExampleCount
Int64

Maximale Anzahl von Beispielen, die zum Trainieren des Normalizers verwendet werden.

useCdf
Boolean

Gibt an, ob CDF als Ausgabe verwendet werden soll.

Gibt zurück

Gilt für:

NormalizeLogMeanVariance(TransformsCatalog, String, String, Int64, Boolean)

Erstellen Sie einen NormalizingEstimator, der basierend auf dem berechneten Mittelwert und der Varianz des Logarithmus der Daten normalisiert.

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeLogMeanVariance (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, long maximumExampleCount = 1000000000, bool useCdf = true);
static member NormalizeLogMeanVariance : Microsoft.ML.TransformsCatalog * string * string * int64 * bool -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeLogMeanVariance (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional maximumExampleCount As Long = 1000000000, Optional useCdf As Boolean = true) As NormalizingEstimator

Parameter

catalog
TransformsCatalog

Der Transformationskatalog

outputColumnName
String

Name der Spalte, die aus der Transformation von inputColumnName. Der Datentyp in dieser Spalte entspricht der Eingabespalte.

inputColumnName
String

Name der zu transformierenden Spalte. Wenn dieser Wert als nullQuelle festgelegt ist, wird der Wert des Werts outputColumnName als Quelle verwendet. Der Datentyp in dieser Spalte sollte ein bekannter Vektor dieser Typen seinSingleDouble.

maximumExampleCount
Int64

Maximale Anzahl von Beispielen, die zum Trainieren des Normalizers verwendet werden.

useCdf
Boolean

Gibt an, ob CDF als Ausgabe verwendet werden soll.

Gibt zurück

Beispiele

using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;

namespace Samples.Dynamic
{
    public class NormalizeLogMeanVariance
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[5] { 1, 1, 3, 0, float.MaxValue } },
                new DataPoint(){ Features = new float[5] { 2, 2, 2, 0, float.MinValue } },
                new DataPoint(){ Features = new float[5] { 0, 0, 1, 0, 0} },
                new DataPoint(){ Features = new float[5] {-1,-1,-1, 1, 1} }
            };
            // Convert training data to IDataView, the general data type used in
            // ML.NET.
            var data = mlContext.Data.LoadFromEnumerable(samples);
            // NormalizeLogMeanVariance normalizes the data based on the computed
            // mean and variance of the logarithm of the data.
            // Uses Cumulative distribution function as output.
            var normalize = mlContext.Transforms.NormalizeLogMeanVariance(
                "Features", useCdf: true);

            // NormalizeLogMeanVariance normalizes the data based on the computed
            // mean and variance of the logarithm of the data.
            var normalizeNoCdf = mlContext.Transforms.NormalizeLogMeanVariance(
                "Features", useCdf: false);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator.
            // This operation doesn't actually evaluate data until we read the data
            // below.
            var normalizeTransform = normalize.Fit(data);
            var transformedData = normalizeTransform.Transform(data);
            var normalizeNoCdfTransform = normalizeNoCdf.Fit(data);
            var noCdfData = normalizeNoCdfTransform.Transform(data);
            var column = transformedData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in column)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  0.1587, 0.1587, 0.8654, 0.0000, 0.8413
            //  0.8413, 0.8413, 0.5837, 0.0000, 0.0000
            //  0.0000, 0.0000, 0.0940, 0.0000, 0.0000
            //  0.0000, 0.0000, 0.0000, 0.0000, 0.1587

            var columnFixZero = noCdfData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in columnFixZero)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  1.8854, 1.8854, 5.2970, 0.0000, 7670682000000000000000000000000000000.0000
            //  4.7708, 4.7708, 3.0925, 0.0000, -7670682000000000000000000000000000000.0000
            // -1.0000,-1.0000, 0.8879, 0.0000, -1.0000
            // -3.8854,-3.8854,-3.5213, 0.0000, -0.9775

            // Let's get transformation parameters. Since we work with only one
            // column we need to pass 0 as parameter for
            // GetNormalizerModelParameters. If we have multiple columns
            // transformations we need to pass index of InputOutputColumnPair.
            var transformParams = normalizeTransform.GetNormalizerModelParameters(0)
                as CdfNormalizerModelParameters<ImmutableArray<float>>;

            Console.WriteLine("The 1-index value in resulting array would be " +
                "produce by:");

            Console.WriteLine("y = 0.5* (1 + ERF((Math.Log(x)- " + transformParams
                .Mean[1] + ") / (" + transformParams.StandardDeviation[1] +
                " * sqrt(2)))");

            // ERF is https://en.wikipedia.org/wiki/Error_function.
            // Expected output:
            //  The 1-index value in resulting array would be produce by:
            //  y = 0.5* (1 + ERF((Math.Log(x)- 0.3465736) / (0.3465736 * sqrt(2)))
            var noCdfParams = normalizeNoCdfTransform.GetNormalizerModelParameters(
                0) as AffineNormalizerModelParameters<ImmutableArray<float>>;
            var offset = noCdfParams.Offset.Length == 0 ? 0 : noCdfParams.Offset[1];
            var scale = noCdfParams.Scale[1];
            Console.WriteLine($"The 1-index value in resulting array would be " +
                $"produce by: y = (x - ({offset})) * {scale}");
            // Expected output:
            // The 1-index value in resulting array would be produce by: y = (x - (0.3465736)) * 2.88539
        }

        private class DataPoint
        {
            [VectorType(5)]
            public float[] Features { get; set; }
        }
    }
}

Gilt für:

NormalizeLogMeanVariance(TransformsCatalog, String, Boolean, String, Int64, Boolean)

Erstellen Sie einen NormalizingEstimator, der basierend auf dem berechneten Mittelwert und der Varianz des Logarithmus der Daten normalisiert.

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeLogMeanVariance (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, bool fixZero, string inputColumnName = default, long maximumExampleCount = 1000000000, bool useCdf = true);
static member NormalizeLogMeanVariance : Microsoft.ML.TransformsCatalog * string * bool * string * int64 * bool -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeLogMeanVariance (catalog As TransformsCatalog, outputColumnName As String, fixZero As Boolean, Optional inputColumnName As String = Nothing, Optional maximumExampleCount As Long = 1000000000, Optional useCdf As Boolean = true) As NormalizingEstimator

Parameter

catalog
TransformsCatalog

Der Transformationskatalog

outputColumnName
String

Name der Spalte, die aus der Transformation von inputColumnName. Der Datentyp in dieser Spalte entspricht der Eingabespalte.

fixZero
Boolean

Gibt an, ob null bis null zugeordnet werden soll, wobei die Sparsität erhalten bleibt.

inputColumnName
String

Name der zu transformierenden Spalte. Wenn dieser Wert als nullQuelle festgelegt ist, wird der Wert des Werts outputColumnName als Quelle verwendet. Der Datentyp in dieser Spalte sollte ein bekannter Vektor dieser Typen seinSingleDouble.

maximumExampleCount
Int64

Maximale Anzahl von Beispielen, die zum Trainieren des Normalizers verwendet werden.

useCdf
Boolean

Gibt an, ob CDF als Ausgabe verwendet werden soll.

Gibt zurück

Beispiele

using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;

namespace Samples.Dynamic
{
    public class NormalizeLogMeanVarianceFixZero
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for exception tracking and logging,
            // as well as the source of randomness.
            var mlContext = new MLContext();
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[5] { 1, 1, 3, 0, float.MaxValue } },
                new DataPoint(){ Features = new float[5] { 2, 2, 2, 0, float.MinValue } },
                new DataPoint(){ Features = new float[5] { 0, 0, 1, 0, 0} },
                new DataPoint(){ Features = new float[5] {-1,-1,-1, 1, 1} }
            };
            // Convert training data to IDataView, the general data type used in ML.NET.
            var data = mlContext.Data.LoadFromEnumerable(samples);
            // NormalizeLogMeanVariance normalizes the data based on the computed mean and variance of the logarithm of the data.
            // Uses Cumulative distribution function as output.
            var normalize = mlContext.Transforms.NormalizeLogMeanVariance("Features", true, useCdf: true);

            // NormalizeLogMeanVariance normalizes the data based on the computed mean and variance of the logarithm of the data.
            var normalizeNoCdf = mlContext.Transforms.NormalizeLogMeanVariance("Features", true, useCdf: false);

            // Now we can transform the data and look at the output to confirm the behavior of the estimator.
            // This operation doesn't actually evaluate data until we read the data below.
            var normalizeTransform = normalize.Fit(data);
            var transformedData = normalizeTransform.Transform(data);
            var normalizeNoCdfTransform = normalizeNoCdf.Fit(data);
            var noCdfData = normalizeNoCdfTransform.Transform(data);
            var column = transformedData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in column)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString("f4"))));
            // Expected output:
            //  0.1587, 0.1587, 0.8654, 0.0000, 0.8413
            //  0.8413, 0.8413, 0.5837, 0.0000, 0.0000
            //  0.0000, 0.0000, 0.0940, 0.0000, 0.0000
            //  0.0000, 0.0000, 0.0000, 0.0000, 0.1587

            var columnFixZero = noCdfData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in columnFixZero)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString("f4"))));
            // Expected output:
            //  2.0403, 2.0403, 4.0001, 0.0000, 5423991000000000000000000000000000000.0000
            //  4.0806, 4.0806, 2.6667, 0.0000,-5423991000000000000000000000000000000.0000
            //  0.0000, 0.0000, 1.3334, 0.0000, 0.0000
            // -2.0403,-2.0403,-1.3334, 0.0000, 0.0159

            // Let's get transformation parameters. Since we work with only one column we need to pass 0 as parameter for GetNormalizerModelParameters.
            // If we have multiple columns transformations we need to pass index of InputOutputColumnPair.
            var transformParams = normalizeTransform.GetNormalizerModelParameters(0) as CdfNormalizerModelParameters<ImmutableArray<float>>;
            Console.WriteLine("The values in the column with index 1 in the resulting array would be produced by:");
            Console.WriteLine($"y = 0.5* (1 + ERF((Math.Log(x)- {transformParams.Mean[1]}) / ({transformParams.StandardDeviation[1]} * sqrt(2)))");

            // ERF is https://en.wikipedia.org/wiki/Error_function.
            // Expected output:
            // The values in the column with index 1 in the resulting array would be produced by:
            // y = 0.5 * (1 + ERF((Math.Log(x) - 0.3465736) / (0.3465736 * sqrt(2)))
            var noCdfParams = normalizeNoCdfTransform.GetNormalizerModelParameters(0) as AffineNormalizerModelParameters<ImmutableArray<float>>;
            var offset = noCdfParams.Offset.Length == 0 ? 0 : noCdfParams.Offset[1];
            var scale = noCdfParams.Scale[1];
            Console.WriteLine($"The values in the column with index 1 in the resulting array would be produced by: y = (x - ({offset})) * {scale}");
            // Expected output:
            // The values in the column with index 1 in the resulting array would be produced by: y = (x - (0)) * 2.040279
        }

        private class DataPoint
        {
            [VectorType(5)]
            public float[] Features { get; set; }
        }
    }
}

Gilt für: