PredictionFunctionExtensions.CreateTimeSeriesEngine Methode
Definition
Wichtig
Einige Informationen beziehen sich auf Vorabversionen, die vor dem Release ggf. grundlegend überarbeitet werden. Microsoft übernimmt hinsichtlich der hier bereitgestellten Informationen keine Gewährleistungen, seien sie ausdrücklich oder konkludent.
Überlädt
CreateTimeSeriesEngine<TSrc,TDst>(ITransformer, IHostEnvironment, PredictionEngineOptions) |
TimeSeriesPredictionEngine<TSrc,TDst> erstellt ein Vorhersagemodul für eine Zeitreihenpipeline. Es aktualisiert den Status des Zeitreihenmodells mit Beobachtungen, die in der Vorhersagephase angezeigt werden, und ermöglicht das Prüfen des Modells. |
CreateTimeSeriesEngine<TSrc,TDst>(ITransformer, IHostEnvironment, Boolean, SchemaDefinition, SchemaDefinition) |
TimeSeriesPredictionEngine<TSrc,TDst> erstellt ein Vorhersagemodul für eine Zeitreihenpipeline. Es aktualisiert den Status des Zeitreihenmodells mit Beobachtungen, die in der Vorhersagephase angezeigt werden, und ermöglicht das Prüfen des Modells. |
CreateTimeSeriesEngine<TSrc,TDst>(ITransformer, IHostEnvironment, PredictionEngineOptions)
TimeSeriesPredictionEngine<TSrc,TDst> erstellt ein Vorhersagemodul für eine Zeitreihenpipeline. Es aktualisiert den Status des Zeitreihenmodells mit Beobachtungen, die in der Vorhersagephase angezeigt werden, und ermöglicht das Prüfen des Modells.
public static Microsoft.ML.Transforms.TimeSeries.TimeSeriesPredictionEngine<TSrc,TDst> CreateTimeSeriesEngine<TSrc,TDst> (this Microsoft.ML.ITransformer transformer, Microsoft.ML.Runtime.IHostEnvironment env, Microsoft.ML.PredictionEngineOptions options) where TSrc : class where TDst : class, new();
static member CreateTimeSeriesEngine : Microsoft.ML.ITransformer * Microsoft.ML.Runtime.IHostEnvironment * Microsoft.ML.PredictionEngineOptions -> Microsoft.ML.Transforms.TimeSeries.TimeSeriesPredictionEngine<'Src, 'Dst (requires 'Src : null and 'Dst : null and 'Dst : (new : unit -> 'Dst))> (requires 'Src : null and 'Dst : null and 'Dst : (new : unit -> 'Dst))
<Extension()>
Public Function CreateTimeSeriesEngine(Of TSrc As Class, TDst As Class) (transformer As ITransformer, env As IHostEnvironment, options As PredictionEngineOptions) As TimeSeriesPredictionEngine(Of TSrc, TDst)
Typparameter
- TSrc
Klasse, die das Eingabeschema für das Modell beschreibt.
- TDst
Klasse, die das Ausgabeschema der Vorhersage beschreibt.
Parameter
- transformer
- ITransformer
Die Zeitreihenpipeline in Form einer ITransformer.
- env
- IHostEnvironment
Normalerweise MLContext
- options
- PredictionEngineOptions
Erweiterte Konfigurationsoptionen.
Gibt zurück
Beispiele
Dies ist ein Beispiel für die Erkennung von Änderungspunkt mithilfe des SSA-Modells (Singular Spectrum Analysis).
using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms.TimeSeries;
namespace Samples.Dynamic
{
public static class DetectChangePointBySsa
{
// This example creates a time series (list of Data with the i-th element
// corresponding to the i-th time slot). It demonstrates stateful prediction
// engine that updates the state of the model and allows for
// saving/reloading. The estimator is applied then to identify points where
// data distribution changed. This estimator can account for temporal
// seasonality in the data.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with a recurring pattern
const int SeasonalitySize = 5;
const int TrainingSeasons = 3;
const int TrainingSize = SeasonalitySize * TrainingSeasons;
var data = new List<TimeSeriesData>()
{
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
};
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup SsaChangePointDetector arguments
var inputColumnName = nameof(TimeSeriesData.Value);
var outputColumnName = nameof(ChangePointPrediction.Prediction);
double confidence = 95;
int changeHistoryLength = 8;
// Train the change point detector.
ITransformer model = ml.Transforms.DetectChangePointBySsa(
outputColumnName, inputColumnName, confidence, changeHistoryLength,
TrainingSize, SeasonalitySize + 1).Fit(dataView);
// Create a prediction engine from the model for feeding new data.
var engine = model.CreateTimeSeriesEngine<TimeSeriesData,
ChangePointPrediction>(ml);
// Start streaming new data points with no change point to the
// prediction engine.
Console.WriteLine($"Output from ChangePoint predictions on new data:");
Console.WriteLine("Data\tAlert\tScore\tP-Value\tMartingale value");
// Output from ChangePoint predictions on new data:
// Data Alert Score P-Value Martingale value
for (int i = 0; i < 5; i++)
PrintPrediction(i, engine.Predict(new TimeSeriesData(i)));
// 0 0 -1.01 0.50 0.00
// 1 0 -0.24 0.22 0.00
// 2 0 -0.31 0.30 0.00
// 3 0 0.44 0.01 0.00
// 4 0 2.16 0.00 0.24
// Now stream data points that reflect a change in trend.
for (int i = 0; i < 5; i++)
{
int value = (i + 1) * 100;
PrintPrediction(value, engine.Predict(new TimeSeriesData(value)));
}
// 100 0 86.23 0.00 2076098.24
// 200 0 171.38 0.00 809668524.21
// 300 1 256.83 0.01 22130423541.93 <-- alert is on, note that delay is expected
// 400 0 326.55 0.04 241162710263.29
// 500 0 364.82 0.08 597660527041.45 <-- saved to disk
// Now we demonstrate saving and loading the model.
// Save the model that exists within the prediction engine.
// The engine has been updating this model with every new data point.
var modelPath = "model.zip";
engine.CheckPoint(ml, modelPath);
// Load the model.
using (var file = File.OpenRead(modelPath))
model = ml.Model.Load(file, out DataViewSchema schema);
// We must create a new prediction engine from the persisted model.
engine = model.CreateTimeSeriesEngine<TimeSeriesData,
ChangePointPrediction>(ml);
// Run predictions on the loaded model.
for (int i = 0; i < 5; i++)
{
int value = (i + 1) * 100;
PrintPrediction(value, engine.Predict(new TimeSeriesData(value)));
}
// 100 0 -58.58 0.15 1096021098844.34 <-- loaded from disk and running new predictions
// 200 0 -41.24 0.20 97579154688.98
// 300 0 -30.61 0.24 95319753.87
// 400 0 58.87 0.38 14.24
// 500 0 219.28 0.36 0.05
}
private static void PrintPrediction(float value, ChangePointPrediction
prediction) =>
Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", value,
prediction.Prediction[0], prediction.Prediction[1],
prediction.Prediction[2], prediction.Prediction[3]);
class ChangePointPrediction
{
[VectorType(4)]
public double[] Prediction { get; set; }
}
class TimeSeriesData
{
public float Value;
public TimeSeriesData(float value)
{
Value = value;
}
}
}
}
Gilt für:
CreateTimeSeriesEngine<TSrc,TDst>(ITransformer, IHostEnvironment, Boolean, SchemaDefinition, SchemaDefinition)
TimeSeriesPredictionEngine<TSrc,TDst> erstellt ein Vorhersagemodul für eine Zeitreihenpipeline. Es aktualisiert den Status des Zeitreihenmodells mit Beobachtungen, die in der Vorhersagephase angezeigt werden, und ermöglicht das Prüfen des Modells.
public static Microsoft.ML.Transforms.TimeSeries.TimeSeriesPredictionEngine<TSrc,TDst> CreateTimeSeriesEngine<TSrc,TDst> (this Microsoft.ML.ITransformer transformer, Microsoft.ML.Runtime.IHostEnvironment env, bool ignoreMissingColumns = false, Microsoft.ML.Data.SchemaDefinition inputSchemaDefinition = default, Microsoft.ML.Data.SchemaDefinition outputSchemaDefinition = default) where TSrc : class where TDst : class, new();
static member CreateTimeSeriesEngine : Microsoft.ML.ITransformer * Microsoft.ML.Runtime.IHostEnvironment * bool * Microsoft.ML.Data.SchemaDefinition * Microsoft.ML.Data.SchemaDefinition -> Microsoft.ML.Transforms.TimeSeries.TimeSeriesPredictionEngine<'Src, 'Dst (requires 'Src : null and 'Dst : null and 'Dst : (new : unit -> 'Dst))> (requires 'Src : null and 'Dst : null and 'Dst : (new : unit -> 'Dst))
<Extension()>
Public Function CreateTimeSeriesEngine(Of TSrc As Class, TDst As Class) (transformer As ITransformer, env As IHostEnvironment, Optional ignoreMissingColumns As Boolean = false, Optional inputSchemaDefinition As SchemaDefinition = Nothing, Optional outputSchemaDefinition As SchemaDefinition = Nothing) As TimeSeriesPredictionEngine(Of TSrc, TDst)
Typparameter
- TSrc
Klasse, die das Eingabeschema für das Modell beschreibt.
- TDst
Klasse, die das Ausgabeschema der Vorhersage beschreibt.
Parameter
- transformer
- ITransformer
Die Zeitreihenpipeline in Form einer ITransformer.
- env
- IHostEnvironment
Normalerweise MLContext
- ignoreMissingColumns
- Boolean
So ignorieren Sie fehlende Spalten. Der Standardwert ist "false".
- inputSchemaDefinition
- SchemaDefinition
Eingabeschemadefinition. Der Standardwert lautet null.
- outputSchemaDefinition
- SchemaDefinition
Ausgabeschemadefinition. Der Standardwert lautet null.
Gibt zurück
Beispiele
Dies ist ein Beispiel für die Erkennung von Änderungspunkt mithilfe des SSA-Modells (Singular Spectrum Analysis).
using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms.TimeSeries;
namespace Samples.Dynamic
{
public static class DetectChangePointBySsa
{
// This example creates a time series (list of Data with the i-th element
// corresponding to the i-th time slot). It demonstrates stateful prediction
// engine that updates the state of the model and allows for
// saving/reloading. The estimator is applied then to identify points where
// data distribution changed. This estimator can account for temporal
// seasonality in the data.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with a recurring pattern
const int SeasonalitySize = 5;
const int TrainingSeasons = 3;
const int TrainingSize = SeasonalitySize * TrainingSeasons;
var data = new List<TimeSeriesData>()
{
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
};
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup SsaChangePointDetector arguments
var inputColumnName = nameof(TimeSeriesData.Value);
var outputColumnName = nameof(ChangePointPrediction.Prediction);
double confidence = 95;
int changeHistoryLength = 8;
// Train the change point detector.
ITransformer model = ml.Transforms.DetectChangePointBySsa(
outputColumnName, inputColumnName, confidence, changeHistoryLength,
TrainingSize, SeasonalitySize + 1).Fit(dataView);
// Create a prediction engine from the model for feeding new data.
var engine = model.CreateTimeSeriesEngine<TimeSeriesData,
ChangePointPrediction>(ml);
// Start streaming new data points with no change point to the
// prediction engine.
Console.WriteLine($"Output from ChangePoint predictions on new data:");
Console.WriteLine("Data\tAlert\tScore\tP-Value\tMartingale value");
// Output from ChangePoint predictions on new data:
// Data Alert Score P-Value Martingale value
for (int i = 0; i < 5; i++)
PrintPrediction(i, engine.Predict(new TimeSeriesData(i)));
// 0 0 -1.01 0.50 0.00
// 1 0 -0.24 0.22 0.00
// 2 0 -0.31 0.30 0.00
// 3 0 0.44 0.01 0.00
// 4 0 2.16 0.00 0.24
// Now stream data points that reflect a change in trend.
for (int i = 0; i < 5; i++)
{
int value = (i + 1) * 100;
PrintPrediction(value, engine.Predict(new TimeSeriesData(value)));
}
// 100 0 86.23 0.00 2076098.24
// 200 0 171.38 0.00 809668524.21
// 300 1 256.83 0.01 22130423541.93 <-- alert is on, note that delay is expected
// 400 0 326.55 0.04 241162710263.29
// 500 0 364.82 0.08 597660527041.45 <-- saved to disk
// Now we demonstrate saving and loading the model.
// Save the model that exists within the prediction engine.
// The engine has been updating this model with every new data point.
var modelPath = "model.zip";
engine.CheckPoint(ml, modelPath);
// Load the model.
using (var file = File.OpenRead(modelPath))
model = ml.Model.Load(file, out DataViewSchema schema);
// We must create a new prediction engine from the persisted model.
engine = model.CreateTimeSeriesEngine<TimeSeriesData,
ChangePointPrediction>(ml);
// Run predictions on the loaded model.
for (int i = 0; i < 5; i++)
{
int value = (i + 1) * 100;
PrintPrediction(value, engine.Predict(new TimeSeriesData(value)));
}
// 100 0 -58.58 0.15 1096021098844.34 <-- loaded from disk and running new predictions
// 200 0 -41.24 0.20 97579154688.98
// 300 0 -30.61 0.24 95319753.87
// 400 0 58.87 0.38 14.24
// 500 0 219.28 0.36 0.05
}
private static void PrintPrediction(float value, ChangePointPrediction
prediction) =>
Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", value,
prediction.Prediction[0], prediction.Prediction[1],
prediction.Prediction[2], prediction.Prediction[3]);
class ChangePointPrediction
{
[VectorType(4)]
public double[] Prediction { get; set; }
}
class TimeSeriesData
{
public float Value;
public TimeSeriesData(float value)
{
Value = value;
}
}
}
}