Classification Class
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Classification task in AutoML Table vertical.
[System.ComponentModel.TypeConverter(typeof(Microsoft.Azure.PowerShell.Cmdlets.MachineLearningServices.Models.Api20240401.ClassificationTypeConverter))]
public class Classification : Microsoft.Azure.PowerShell.Cmdlets.MachineLearningServices.Models.Api20240401.IClassification, Microsoft.Azure.PowerShell.Cmdlets.MachineLearningServices.Runtime.IValidates
[<System.ComponentModel.TypeConverter(typeof(Microsoft.Azure.PowerShell.Cmdlets.MachineLearningServices.Models.Api20240401.ClassificationTypeConverter))>]
type Classification = class
interface IClassification
interface IJsonSerializable
interface ITableVertical
interface IAutoMlVertical
interface IValidates
Public Class Classification
Implements IClassification, IValidates
- Inheritance
-
Classification
- Attributes
- Implements
Constructors
Classification() |
Creates an new Classification instance. |
Properties
CvSplitColumnName |
Columns to use for CVSplit data. |
FeaturizationSetting |
Featurization inputs needed for AutoML job. |
FeaturizationSettingBlockedTransformer |
These transformers shall not be used in featurization. |
FeaturizationSettingColumnNameAndType |
Dictionary of column name and its type (int, float, string, datetime etc). |
FeaturizationSettingDatasetLanguage |
Dataset language, useful for the text data. |
FeaturizationSettingEnableDnnFeaturization |
Determines whether to use Dnn based featurizers for data featurization. |
FeaturizationSettingMode |
Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase. If 'Off' is selected then no featurization is done. If 'Custom' is selected then user can specify additional inputs to customize how featurization is done. |
FeaturizationSettingTransformerParam |
User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor. |
LimitSetting |
Execution constraints for AutoMLJob. |
LimitSettingEnableEarlyTermination |
Enable early termination, determines whether or not if AutoMLJob will terminate early if there is no score improvement in last 20 iterations. |
LimitSettingExitScore |
Exit score for the AutoML job. |
LimitSettingMaxConcurrentTrial |
Maximum Concurrent iterations. |
LimitSettingMaxCoresPerTrial |
Max cores per iteration. |
LimitSettingMaxTrial |
Number of iterations. |
LimitSettingTimeout |
AutoML job timeout. |
LimitSettingTrialTimeout |
Iteration timeout. |
LogVerbosity |
Log verbosity for the job. |
NCrossValidation |
Number of cross validation folds to be applied on training dataset when validation dataset is not provided. |
NCrossValidationMode |
[Required] Mode for determining N-Cross validations. |
PositiveLabel |
Positive label for binary metrics calculation. |
PrimaryMetric |
Primary metric for the task. |
TargetColumnName |
Target column name: This is prediction values column. Also known as label column name in context of classification tasks. |
TaskType |
[Required] Task type for AutoMLJob. |
TestData |
Test data input. |
TestDataDescription |
Description for the input. |
TestDataJobInputType |
[Required] Specifies the type of job. |
TestDataMode |
Input Asset Delivery Mode. |
TestDataSize |
The fraction of test dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
TestDataUri |
[Required] Input Asset URI. |
TrainingData |
[Required] Training data input. |
TrainingDataDescription |
Description for the input. |
TrainingDataJobInputType |
[Required] Specifies the type of job. |
TrainingDataMode |
Input Asset Delivery Mode. |
TrainingDataUri |
[Required] Input Asset URI. |
TrainingSettingAllowedTrainingAlgorithm |
Allowed models for classification task. |
TrainingSettingBlockedTrainingAlgorithm |
Blocked models for classification task. |
TrainingSettingEnableDnnTraining |
Enable recommendation of DNN models. |
TrainingSettingEnableModelExplainability |
Flag to turn on explainability on best model. |
TrainingSettingEnableOnnxCompatibleModel |
Flag for enabling onnx compatible models. |
TrainingSettingEnableStackEnsemble |
Enable stack ensemble run. |
TrainingSettingEnableVoteEnsemble |
Enable voting ensemble run. |
TrainingSettingEnsembleModelDownloadTimeout |
During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded. Configure this parameter with a higher value than 300 secs, if more time is needed. |
TrainingSettingStackEnsembleSettingStackMetaLearnerKWarg |
Optional parameters to pass to the initializer of the meta-learner. |
TrainingSettingStackEnsembleSettingStackMetaLearnerTrainPercentage |
Specifies the proportion of the training set (when choosing train and validation type of training) to be reserved for training the meta-learner. Default value is 0.2. |
TrainingSettingStackEnsembleSettingStackMetaLearnerType |
The meta-learner is a model trained on the output of the individual heterogeneous models. |
ValidationData |
Validation data inputs. |
ValidationDataDescription |
Description for the input. |
ValidationDataJobInputType |
[Required] Specifies the type of job. |
ValidationDataMode |
Input Asset Delivery Mode. |
ValidationDataSize |
The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
ValidationDataUri |
[Required] Input Asset URI. |
WeightColumnName |
The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. |
Methods
DeserializeFromDictionary(IDictionary) |
Deserializes a IDictionary into an instance of Classification. |
DeserializeFromPSObject(PSObject) |
Deserializes a PSObject into an instance of Classification. |
FromJson(JsonNode) |
Deserializes a JsonNode into an instance of Microsoft.Azure.PowerShell.Cmdlets.MachineLearningServices.Models.Api20240401.IClassification. |
FromJsonString(String) |
Creates a new instance of Classification, deserializing the content from a json string. |
ToJson(JsonObject, SerializationMode) |
Serializes this instance of Classification into a JsonNode. |
ToJsonString() |
Serializes this instance to a json string. |
ToString() | |
Validate(IEventListener) |
Validates that this object meets the validation criteria. |