ForecastingSettings Class
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Forecasting specific parameters.
[System.ComponentModel.TypeConverter(typeof(Microsoft.Azure.PowerShell.Cmdlets.MachineLearningServices.Models.Api20240401.ForecastingSettingsTypeConverter))]
public class ForecastingSettings : Microsoft.Azure.PowerShell.Cmdlets.MachineLearningServices.Models.Api20240401.IForecastingSettings
[<System.ComponentModel.TypeConverter(typeof(Microsoft.Azure.PowerShell.Cmdlets.MachineLearningServices.Models.Api20240401.ForecastingSettingsTypeConverter))>]
type ForecastingSettings = class
interface IForecastingSettings
interface IJsonSerializable
Public Class ForecastingSettings
Implements IForecastingSettings
- Inheritance
-
ForecastingSettings
- Attributes
- Implements
Constructors
ForecastingSettings() |
Creates an new ForecastingSettings instance. |
Properties
CountryOrRegionForHoliday |
Country or region for holidays for forecasting tasks. These should be ISO 3166 two-letter country/region codes, for example 'US' or 'GB'. |
CvStepSize |
Number of periods between the origin time of one CV fold and the next fold. For
example, if |
FeatureLag |
Flag for generating lags for the numeric features with 'auto' or null. |
ForecastHorizonMode |
[Required] Set forecast horizon value selection mode. |
Frequency |
When forecasting, this parameter represents the period with which the forecast is desired, for example daily, weekly, yearly, etc. The forecast frequency is dataset frequency by default. |
SeasonalityMode |
[Required] Seasonality mode. |
ShortSeriesHandlingConfig |
The parameter defining how if AutoML should handle short time series. |
TargetAggregateFunction |
The function to be used to aggregate the time series target column to conform to a user specified frequency. If the TargetAggregateFunction is set i.e. not 'None', but the freq parameter is not set, the error is raised. The possible target aggregation functions are: "sum", "max", "min" and "mean". |
TargetLagMode |
[Required] Set target lags mode - Auto/Custom |
TargetRollingWindowSizeMode |
[Required] TargetRollingWindowSiz detection mode. |
TimeColumnName |
The name of the time column. This parameter is required when forecasting to specify the datetime column in the input data used for building the time series and inferring its frequency. |
TimeSeriesIdColumnName |
The names of columns used to group a timeseries. It can be used to create multiple series. If grain is not defined, the data set is assumed to be one time-series. This parameter is used with task type forecasting. |
UseStl |
Configure STL Decomposition of the time-series target column. |
Methods
DeserializeFromDictionary(IDictionary) |
Deserializes a IDictionary into an instance of ForecastingSettings. |
DeserializeFromPSObject(PSObject) |
Deserializes a PSObject into an instance of ForecastingSettings. |
FromJson(JsonNode) |
Deserializes a JsonNode into an instance of Microsoft.Azure.PowerShell.Cmdlets.MachineLearningServices.Models.Api20240401.IForecastingSettings. |
FromJsonString(String) |
Creates a new instance of ForecastingSettings, deserializing the content from a json string. |
ToJson(JsonObject, SerializationMode) |
Serializes this instance of ForecastingSettings into a JsonNode. |
ToJsonString() |
Serializes this instance to a json string. |
ToString() |