TensorPrimitives.Add Method
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Overloads
Add(ReadOnlySpan<Single>, ReadOnlySpan<Single>, Span<Single>) |
Computes the element-wise addition of single-precision floating-point numbers in the specified tensors. |
Add(ReadOnlySpan<Single>, Single, Span<Single>) |
Computes the element-wise addition of single-precision floating-point numbers in the specified tensors. |
Add<T>(ReadOnlySpan<T>, ReadOnlySpan<T>, Span<T>) |
Computes the element-wise addition of numbers in the specified tensors. |
Add<T>(ReadOnlySpan<T>, T, Span<T>) |
Computes the element-wise addition of numbers in the specified tensors. |
Add(ReadOnlySpan<Single>, ReadOnlySpan<Single>, Span<Single>)
- Source:
- TensorPrimitives.cs
- Source:
- TensorPrimitives.Single.cs
- Source:
- TensorPrimitives.Single.cs
Computes the element-wise addition of single-precision floating-point numbers in the specified tensors.
public:
static void Add(ReadOnlySpan<float> x, ReadOnlySpan<float> y, Span<float> destination);
public static void Add (ReadOnlySpan<float> x, ReadOnlySpan<float> y, Span<float> destination);
static member Add : ReadOnlySpan<single> * ReadOnlySpan<single> * Span<single> -> unit
Public Shared Sub Add (x As ReadOnlySpan(Of Single), y As ReadOnlySpan(Of Single), destination As Span(Of Single))
Parameters
The first tensor, represented as a span.
The second tensor, represented as a span.
Exceptions
y
and destination
reference overlapping memory locations and do not begin at the same location.
Remarks
This method effectively computes
.destination
[i] = x
[i] + y
[i]
If either of the element-wise input values is equal to NaN, the resulting element-wise value is also NaN.
Applies to
Add(ReadOnlySpan<Single>, Single, Span<Single>)
- Source:
- TensorPrimitives.cs
- Source:
- TensorPrimitives.Single.cs
- Source:
- TensorPrimitives.Single.cs
Computes the element-wise addition of single-precision floating-point numbers in the specified tensors.
public:
static void Add(ReadOnlySpan<float> x, float y, Span<float> destination);
public static void Add (ReadOnlySpan<float> x, float y, Span<float> destination);
static member Add : ReadOnlySpan<single> * single * Span<single> -> unit
Public Shared Sub Add (x As ReadOnlySpan(Of Single), y As Single, destination As Span(Of Single))
Parameters
The first tensor, represented as a span.
- y
- Single
The second tensor, represented as a scalar.
Exceptions
x
and destination
reference overlapping memory locations and do not begin at the same location.
Remarks
This method effectively computes
.destination
[i] = x
[i] + y
If either of the element-wise input values is equal to NaN, the resulting element-wise value is also NaN.
Applies to
Add<T>(ReadOnlySpan<T>, ReadOnlySpan<T>, Span<T>)
- Source:
- TensorPrimitives.Add.cs
- Source:
- TensorPrimitives.Add.cs
Computes the element-wise addition of numbers in the specified tensors.
public:
generic <typename T>
where T : System::Numerics::IAdditionOperators<T, T, T>, System::Numerics::IAdditiveIdentity<T, T> static void Add(ReadOnlySpan<T> x, ReadOnlySpan<T> y, Span<T> destination);
public static void Add<T> (ReadOnlySpan<T> x, ReadOnlySpan<T> y, Span<T> destination) where T : System.Numerics.IAdditionOperators<T,T,T>, System.Numerics.IAdditiveIdentity<T,T>;
static member Add : ReadOnlySpan<'T (requires 'T :> System.Numerics.IAdditionOperators<'T, 'T, 'T> and 'T :> System.Numerics.IAdditiveIdentity<'T, 'T>)> * ReadOnlySpan<'T (requires 'T :> System.Numerics.IAdditionOperators<'T, 'T, 'T> and 'T :> System.Numerics.IAdditiveIdentity<'T, 'T>)> * Span<'T (requires 'T :> System.Numerics.IAdditionOperators<'T, 'T, 'T> and 'T :> System.Numerics.IAdditiveIdentity<'T, 'T>)> -> unit (requires 'T :> System.Numerics.IAdditionOperators<'T, 'T, 'T> and 'T :> System.Numerics.IAdditiveIdentity<'T, 'T>)
Public Shared Sub Add(Of T As {IAdditionOperators(Of T, T, T), IAdditiveIdentity(Of T, T)}) (x As ReadOnlySpan(Of T), y As ReadOnlySpan(Of T), destination As Span(Of T))
Type Parameters
- T
Parameters
The first tensor, represented as a span.
The second tensor, represented as a span.
- destination
- Span<T>
The destination tensor, represented as a span.
Exceptions
y
and destination
reference overlapping memory locations and do not begin at the same location.
Remarks
This method effectively computes
.destination
[i] = x
[i] + y
[i]
If either of the element-wise input values is equal to NaN, the resulting element-wise value is also NaN.
Applies to
Add<T>(ReadOnlySpan<T>, T, Span<T>)
- Source:
- TensorPrimitives.Add.cs
- Source:
- TensorPrimitives.Add.cs
Computes the element-wise addition of numbers in the specified tensors.
public:
generic <typename T>
where T : System::Numerics::IAdditionOperators<T, T, T>, System::Numerics::IAdditiveIdentity<T, T> static void Add(ReadOnlySpan<T> x, T y, Span<T> destination);
public static void Add<T> (ReadOnlySpan<T> x, T y, Span<T> destination) where T : System.Numerics.IAdditionOperators<T,T,T>, System.Numerics.IAdditiveIdentity<T,T>;
static member Add : ReadOnlySpan<'T (requires 'T :> System.Numerics.IAdditionOperators<'T, 'T, 'T> and 'T :> System.Numerics.IAdditiveIdentity<'T, 'T>)> * 'T * Span<'T (requires 'T :> System.Numerics.IAdditionOperators<'T, 'T, 'T> and 'T :> System.Numerics.IAdditiveIdentity<'T, 'T>)> -> unit (requires 'T :> System.Numerics.IAdditionOperators<'T, 'T, 'T> and 'T :> System.Numerics.IAdditiveIdentity<'T, 'T>)
Public Shared Sub Add(Of T As {IAdditionOperators(Of T, T, T), IAdditiveIdentity(Of T, T)}) (x As ReadOnlySpan(Of T), y As T, destination As Span(Of T))
Type Parameters
- T
Parameters
The first tensor, represented as a span.
- y
- T
The second tensor, represented as a scalar.
- destination
- Span<T>
The destination tensor, represented as a span.
Exceptions
x
and destination
reference overlapping memory locations and do not begin at the same location.
Remarks
This method effectively computes
.destination
[i] = x
[i] + y
If either of the element-wise input values is equal to NaN, the resulting element-wise value is also NaN.