Compartir a través de


PcaCatalog.RandomizedPca Método

Definición

Sobrecargas

RandomizedPca(AnomalyDetectionCatalog+AnomalyDetectionTrainers, RandomizedPcaTrainer+Options)

Cree RandomizedPcaTrainer con opciones avanzadas, que entrena un modelo aproximado de análisis de componentes principales (PCA) mediante el algoritmo aleatorio de descomposición de valores singulares (SVD).

RandomizedPca(AnomalyDetectionCatalog+AnomalyDetectionTrainers, String, String, Int32, Int32, Boolean, Nullable<Int32>)

Cree RandomizedPcaTrainer, que entrena un modelo aproximado de análisis de componentes principales (PCA) mediante el algoritmo aleatorio de descomposición de valores singulares (SVD).

RandomizedPca(AnomalyDetectionCatalog+AnomalyDetectionTrainers, RandomizedPcaTrainer+Options)

Cree RandomizedPcaTrainer con opciones avanzadas, que entrena un modelo aproximado de análisis de componentes principales (PCA) mediante el algoritmo aleatorio de descomposición de valores singulares (SVD).

public static Microsoft.ML.Trainers.RandomizedPcaTrainer RandomizedPca (this Microsoft.ML.AnomalyDetectionCatalog.AnomalyDetectionTrainers catalog, Microsoft.ML.Trainers.RandomizedPcaTrainer.Options options);
static member RandomizedPca : Microsoft.ML.AnomalyDetectionCatalog.AnomalyDetectionTrainers * Microsoft.ML.Trainers.RandomizedPcaTrainer.Options -> Microsoft.ML.Trainers.RandomizedPcaTrainer
<Extension()>
Public Function RandomizedPca (catalog As AnomalyDetectionCatalog.AnomalyDetectionTrainers, options As RandomizedPcaTrainer.Options) As RandomizedPcaTrainer

Parámetros

catalog
AnomalyDetectionCatalog.AnomalyDetectionTrainers

Objeto instructor del catálogo de detección de anomalías.

options
RandomizedPcaTrainer.Options

Opciones avanzadas para el algoritmo.

Devoluciones

Ejemplos

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.AnomalyDetection
{
    public static class RandomizedPcaSampleWithOptions
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Training data.
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[3] {0, 2, 1} },
                new DataPoint(){ Features = new float[3] {0, 2, 3} },
                new DataPoint(){ Features = new float[3] {0, 2, 4} },
                new DataPoint(){ Features = new float[3] {0, 2, 1} },
                new DataPoint(){ Features = new float[3] {0, 2, 2} },
                new DataPoint(){ Features = new float[3] {0, 2, 3} },
                new DataPoint(){ Features = new float[3] {0, 2, 4} },
                new DataPoint(){ Features = new float[3] {1, 0, 0} }
            };

            // Convert the List<DataPoint> to IDataView, a consumable format to
            // ML.NET functions.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            var options = new Microsoft.ML.Trainers.RandomizedPcaTrainer.Options()
            {
                FeatureColumnName = nameof(DataPoint.Features),
                Rank = 1,
                Seed = 10,
            };

            // Create an anomaly detector. Its underlying algorithm is randomized
            // PCA.
            var pipeline = mlContext.AnomalyDetection.Trainers.RandomizedPca(
                options);

            // Train the anomaly detector.
            var model = pipeline.Fit(data);

            // Apply the trained model on the training data.
            var transformed = model.Transform(data);

            // Read ML.NET predictions into IEnumerable<Result>.
            var results = mlContext.Data.CreateEnumerable<Result>(transformed,
                reuseRowObject: false).ToList();

            // Let's go through all predictions.
            for (int i = 0; i < samples.Count; ++i)
            {
                // The i-th example's prediction result.
                var result = results[i];

                // The i-th example's feature vector in text format.
                var featuresInText = string.Join(',', samples[i].Features);

                if (result.PredictedLabel)
                    // The i-th sample is predicted as an outlier.
                    Console.WriteLine("The {0}-th example with features [{1}] is" +
                        "an outlier with a score of being outlier {2}", i,
                        featuresInText, result.Score);
                else
                    // The i-th sample is predicted as an inlier.
                    Console.WriteLine("The {0}-th example with features [{1}] is" +
                        "an inlier with a score of being outlier {2}",
                        i, featuresInText, result.Score);
            }
            // Lines printed out should be
            // The 0 - th example with features[0, 2, 1] is an inlier with a score of being outlier 0.2264826
            // The 1 - th example with features[0, 2, 3] is an inlier with a score of being outlier 0.1739471
            // The 2 - th example with features[0, 2, 4] is an inlier with a score of being outlier 0.05711612
            // The 3 - th example with features[0, 2, 1] is an inlier with a score of being outlier 0.2264826
            // The 4 - th example with features[0, 2, 2] is an inlier with a score of being outlier 0.3868995
            // The 5 - th example with features[0, 2, 3] is an inlier with a score of being outlier 0.1739471
            // The 6 - th example with features[0, 2, 4] is an inlier with a score of being outlier 0.05711612
            // The 7 - th example with features[1, 0, 0] is an outlier with a score of being outlier 0.6260795
        }

        // Example with 3 feature values. A training data set is a collection of
        // such examples.
        private class DataPoint
        {
            [VectorType(3)]
            public float[] Features { get; set; }
        }

        // Class used to capture prediction of DataPoint.
        private class Result
        {
            // Outlier gets true while inlier has false.
            public bool PredictedLabel { get; set; }
            // Inlier gets smaller score. Score is between 0 and 1.
            public float Score { get; set; }
        }
    }
}

Comentarios

De forma predeterminada, el umbral usado para determinar la etiqueta de un punto de datos en función de la puntuación prevista es 0,5. Las puntuaciones van de 0 a 1. Un punto de datos con puntuación prevista superior a 0,5 se considera un valor atípico. Use ChangeModelThreshold<TModel>(AnomalyPredictionTransformer<TModel>, Single) para cambiar este umbral.

Se aplica a

RandomizedPca(AnomalyDetectionCatalog+AnomalyDetectionTrainers, String, String, Int32, Int32, Boolean, Nullable<Int32>)

Cree RandomizedPcaTrainer, que entrena un modelo aproximado de análisis de componentes principales (PCA) mediante el algoritmo aleatorio de descomposición de valores singulares (SVD).

public static Microsoft.ML.Trainers.RandomizedPcaTrainer RandomizedPca (this Microsoft.ML.AnomalyDetectionCatalog.AnomalyDetectionTrainers catalog, string featureColumnName = "Features", string exampleWeightColumnName = default, int rank = 20, int oversampling = 20, bool ensureZeroMean = true, int? seed = default);
static member RandomizedPca : Microsoft.ML.AnomalyDetectionCatalog.AnomalyDetectionTrainers * string * string * int * int * bool * Nullable<int> -> Microsoft.ML.Trainers.RandomizedPcaTrainer
<Extension()>
Public Function RandomizedPca (catalog As AnomalyDetectionCatalog.AnomalyDetectionTrainers, Optional featureColumnName As String = "Features", Optional exampleWeightColumnName As String = Nothing, Optional rank As Integer = 20, Optional oversampling As Integer = 20, Optional ensureZeroMean As Boolean = true, Optional seed As Nullable(Of Integer) = Nothing) As RandomizedPcaTrainer

Parámetros

catalog
AnomalyDetectionCatalog.AnomalyDetectionTrainers

Objeto instructor del catálogo de detección de anomalías.

featureColumnName
String

Nombre de la columna de característica. Los datos de columna deben ser un vector de tamaño conocido de Single.

exampleWeightColumnName
String

Nombre de la columna de peso de ejemplo (opcional). Para usar la columna weight, los datos de columna deben ser de tipo Single.

rank
Int32

Número de componentes del PCA.

oversampling
Int32

Parámetro de sobremuestreo para el entrenamiento de PCA aleatorio.

ensureZeroMean
Boolean

Si está habilitado, los datos se centran en cero media.

seed
Nullable<Int32>

Inicialización para la generación de números aleatorios.

Devoluciones

Ejemplos

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.AnomalyDetection
{
    public static class RandomizedPcaSample
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for except
            // ion tracking and logging, as a catalog of available operations and as
            // the source of randomness. Setting the seed to a fixed number in this
            // example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Training data.
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[3] {0, 2, 1} },
                new DataPoint(){ Features = new float[3] {0, 2, 1} },
                new DataPoint(){ Features = new float[3] {0, 2, 1} },
                new DataPoint(){ Features = new float[3] {0, 1, 2} },
                new DataPoint(){ Features = new float[3] {0, 2, 1} },
                new DataPoint(){ Features = new float[3] {2, 0, 0} }
            };

            // Convert the List<DataPoint> to IDataView, a consumable format to
            // ML.NET functions.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Create an anomaly detector. Its underlying algorithm is randomized
            // PCA.
            var pipeline = mlContext.AnomalyDetection.Trainers.RandomizedPca(
                featureColumnName: nameof(DataPoint.Features), rank: 1,
                    ensureZeroMean: false);

            // Train the anomaly detector.
            var model = pipeline.Fit(data);

            // Apply the trained model on the training data.
            var transformed = model.Transform(data);

            // Read ML.NET predictions into IEnumerable<Result>.
            var results = mlContext.Data.CreateEnumerable<Result>(transformed,
                reuseRowObject: false).ToList();

            // Let's go through all predictions.
            for (int i = 0; i < samples.Count; ++i)
            {
                // The i-th example's prediction result.
                var result = results[i];

                // The i-th example's feature vector in text format.
                var featuresInText = string.Join(',', samples[i].Features);

                if (result.PredictedLabel)
                    // The i-th sample is predicted as an outlier.
                    Console.WriteLine("The {0}-th example with features [{1}] is " +
                        "an outlier with a score of being inlier {2}", i,
                            featuresInText, result.Score);
                else
                    // The i-th sample is predicted as an inlier.
                    Console.WriteLine("The {0}-th example with features [{1}] is " +
                        "an inlier with a score of being inlier {2}", i,
                        featuresInText, result.Score);
            }
            // Lines printed out should be
            // The 0 - th example with features[0, 2, 1] is an inlier with a score of being outlier 0.1101028
            // The 1 - th example with features[0, 2, 1] is an inlier with a score of being outlier 0.1101028
            // The 2 - th example with features[0, 2, 1] is an inlier with a score of being outlier 0.1101028
            // The 3 - th example with features[0, 1, 2] is an outlier with a score of being outlier 0.5082728
            // The 4 - th example with features[0, 2, 1] is an inlier with a score of being outlier 0.1101028
            // The 5 - th example with features[2, 0, 0] is an outlier with a score of being outlier 1
        }

        // Example with 3 feature values. A training data set is a collection of
        // such examples.
        private class DataPoint
        {
            [VectorType(3)]
            public float[] Features { get; set; }
        }

        // Class used to capture prediction of DataPoint.
        private class Result
        {
            // Outlier gets true while inlier has false.
            public bool PredictedLabel { get; set; }
            // Inlier gets smaller score. Score is between 0 and 1.
            public float Score { get; set; }
        }
    }
}

Comentarios

De forma predeterminada, el umbral usado para determinar la etiqueta de un punto de datos en función de la puntuación prevista es 0,5. Las puntuaciones van de 0 a 1. Un punto de datos con puntuación prevista superior a 0,5 se considera un valor atípico. Use ChangeModelThreshold<TModel>(AnomalyPredictionTransformer<TModel>, Single) para cambiar este umbral.

Se aplica a