OnlineLinearTrainer<TTransformer,TModel> Classe
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Classe de base pour les formateurs linéaires en ligne. Les formateurs en ligne peuvent être mis à jour de manière incrémentielle avec des données supplémentaires.
public abstract class OnlineLinearTrainer<TTransformer,TModel> : Microsoft.ML.Trainers.TrainerEstimatorBase<TTransformer,TModel> where TTransformer : ISingleFeaturePredictionTransformer<TModel> where TModel : class
type OnlineLinearTrainer<'ransformer, 'Model (requires 'ransformer :> ISingleFeaturePredictionTransformer<'Model> and 'Model : null)> = class
inherit TrainerEstimatorBase<'ransformer, 'Model (requires 'ransformer :> ISingleFeaturePredictionTransformer<'Model> and 'Model : null)>
Public MustInherit Class OnlineLinearTrainer(Of TTransformer, TModel)
Inherits TrainerEstimatorBase(Of TTransformer, TModel)
Paramètres de type
- TTransformer
- TModel
- Héritage
- Dérivé
Champs
FeatureColumn |
Colonne de caractéristique attendue par l’entraîneur. (Hérité de TrainerEstimatorBase<TTransformer,TModel>) |
LabelColumn |
Colonne d’étiquette attendue par le formateur. Peut être |
WeightColumn |
Colonne de poids attendue par l’entraîneur. Peut être |
Propriétés
Info |
Classe de base pour les formateurs linéaires en ligne. Les formateurs en ligne peuvent être mis à jour de manière incrémentielle avec des données supplémentaires. |
Méthodes
Fit(IDataView, LinearModelParameters) |
Poursuit la formation d’un OnlineLinearTrainer<TTransformer,TModel> utilisateur déjà formé |
Fit(IDataView) |
Entraîne et retourne un ITransformer. (Hérité de TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
Classe de base pour les formateurs linéaires en ligne. Les formateurs en ligne peuvent être mis à jour de manière incrémentielle avec des données supplémentaires. (Hérité de TrainerEstimatorBase<TTransformer,TModel>) |
Méthodes d’extension
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Ajoutez un « point de contrôle de mise en cache » à la chaîne d’estimateur. Cela garantit que les estimateurs en aval seront entraînés par rapport aux données mises en cache. Il est utile d’avoir un point de contrôle de mise en cache avant les formateurs qui prennent plusieurs passes de données. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Étant donné un estimateur, retournez un objet de création de package de package qui appellera un délégué une fois Fit(IDataView) appelé. Il est souvent important pour un estimateur de retourner des informations sur ce qui a été adapté, c’est pourquoi la Fit(IDataView) méthode retourne un objet spécifiquement typé, plutôt que simplement un général ITransformer. Toutefois, en même temps, IEstimator<TTransformer> sont souvent formés en pipelines avec de nombreux objets. Nous pouvons donc avoir besoin de créer une chaîne d’estimateurs via EstimatorChain<TLastTransformer> laquelle l’estimateur pour lequel nous voulons obtenir le transformateur est enterré quelque part dans cette chaîne. Pour ce scénario, nous pouvons par le biais de cette méthode attacher un délégué qui sera appelé une fois l’ajustement appelé. |