RedisMemoryStore Constructors
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Overloads
RedisMemoryStore(IDatabase, Int32, Schema+VectorField+VectorAlgo, VectorDistanceMetric, Int32) |
Create a new instance of semantic memory using Redis. |
RedisMemoryStore(String, Int32, Schema+VectorField+VectorAlgo, VectorDistanceMetric, Int32) |
Create a new instance of semantic memory using Redis. |
RedisMemoryStore(IDatabase, Int32, Schema+VectorField+VectorAlgo, VectorDistanceMetric, Int32)
Create a new instance of semantic memory using Redis.
public RedisMemoryStore (StackExchange.Redis.IDatabase database, int vectorSize = 1536, NRedisStack.Search.Schema.VectorField.VectorAlgo vectorIndexAlgorithm = NRedisStack.Search.Schema+VectorField+VectorAlgo.HNSW, Microsoft.SemanticKernel.Connectors.Redis.VectorDistanceMetric vectorDistanceMetric = Microsoft.SemanticKernel.Connectors.Redis.VectorDistanceMetric.COSINE, int queryDialect = 2);
new Microsoft.SemanticKernel.Connectors.Redis.RedisMemoryStore : StackExchange.Redis.IDatabase * int * NRedisStack.Search.Schema.VectorField.VectorAlgo * Microsoft.SemanticKernel.Connectors.Redis.VectorDistanceMetric * int -> Microsoft.SemanticKernel.Connectors.Redis.RedisMemoryStore
Public Sub New (database As IDatabase, Optional vectorSize As Integer = 1536, Optional vectorIndexAlgorithm As Schema.VectorField.VectorAlgo = NRedisStack.Search.Schema+VectorField+VectorAlgo.HNSW, Optional vectorDistanceMetric As VectorDistanceMetric = Microsoft.SemanticKernel.Connectors.Redis.VectorDistanceMetric.COSINE, Optional queryDialect As Integer = 2)
Parameters
- database
- StackExchange.Redis.IDatabase
The database of the Redis server.
- vectorSize
- Int32
Embedding vector size, defaults to 1536
- vectorIndexAlgorithm
- NRedisStack.Search.Schema.VectorField.VectorAlgo
Indexing algorithm for vectors, defaults to "HNSW"
- vectorDistanceMetric
- VectorDistanceMetric
Metric for measuring vector distances, defaults to "COSINE"
- queryDialect
- Int32
Query dialect, must be 2 or greater for vector similarity searching, defaults to 2
Applies to
RedisMemoryStore(String, Int32, Schema+VectorField+VectorAlgo, VectorDistanceMetric, Int32)
Create a new instance of semantic memory using Redis.
public RedisMemoryStore (string connectionString, int vectorSize = 1536, NRedisStack.Search.Schema.VectorField.VectorAlgo vectorIndexAlgorithm = NRedisStack.Search.Schema+VectorField+VectorAlgo.HNSW, Microsoft.SemanticKernel.Connectors.Redis.VectorDistanceMetric vectorDistanceMetric = Microsoft.SemanticKernel.Connectors.Redis.VectorDistanceMetric.COSINE, int queryDialect = 2);
new Microsoft.SemanticKernel.Connectors.Redis.RedisMemoryStore : string * int * NRedisStack.Search.Schema.VectorField.VectorAlgo * Microsoft.SemanticKernel.Connectors.Redis.VectorDistanceMetric * int -> Microsoft.SemanticKernel.Connectors.Redis.RedisMemoryStore
Public Sub New (connectionString As String, Optional vectorSize As Integer = 1536, Optional vectorIndexAlgorithm As Schema.VectorField.VectorAlgo = NRedisStack.Search.Schema+VectorField+VectorAlgo.HNSW, Optional vectorDistanceMetric As VectorDistanceMetric = Microsoft.SemanticKernel.Connectors.Redis.VectorDistanceMetric.COSINE, Optional queryDialect As Integer = 2)
Parameters
- connectionString
- String
Provide connection URL to a Redis instance
- vectorSize
- Int32
Embedding vector size, defaults to 1536
- vectorIndexAlgorithm
- NRedisStack.Search.Schema.VectorField.VectorAlgo
Indexing algorithm for vectors, defaults to "HNSW"
- vectorDistanceMetric
- VectorDistanceMetric
Metric for measuring vector distances, defaults to "COSINE"
- queryDialect
- Int32
Query dialect, must be 2 or greater for vector similarity searching, defaults to 2