Partager via


Math.Pow(Double, Double) Méthode

Définition

Retourne un nombre spécifié élevé à la puissance spécifiée.

public:
 static double Pow(double x, double y);
public static double Pow (double x, double y);
static member Pow : double * double -> double
Public Shared Function Pow (x As Double, y As Double) As Double

Paramètres

x
Double

Nombre à virgule flottante double précision à élever à une puissance.

y
Double

Nombre à virgule flottante double précision. qui spécifie une puissance.

Retours

Nombre x élevé à la puissance y.

Exemples

L’exemple suivant utilise la Pow méthode pour calculer la valeur qui résulte de l’élévation de 2 à une puissance comprise entre 0 et 32.

int value = 2;
for (int power = 0; power <= 32; power++)
   Console.WriteLine($"{value}^{power} = {(long)Math.Pow(value, power):N0} (0x{(long)Math.Pow(value, power):X})");

// The example displays the following output:
//     2^0 = 1 (0x1)
//     2^1 = 2 (0x2)
//     2^2 = 4 (0x4)
//     2^3 = 8 (0x8)
//     2^4 = 16 (0x10)
//     2^5 = 32 (0x20)
//     2^6 = 64 (0x40)
//     2^7 = 128 (0x80)
//     2^8 = 256 (0x100)
//     2^9 = 512 (0x200)
//     2^10 = 1,024 (0x400)
//     2^11 = 2,048 (0x800)
//     2^12 = 4,096 (0x1000)
//     2^13 = 8,192 (0x2000)
//     2^14 = 16,384 (0x4000)
//     2^15 = 32,768 (0x8000)
//     2^16 = 65,536 (0x10000)
//     2^17 = 131,072 (0x20000)
//     2^18 = 262,144 (0x40000)
//     2^19 = 524,288 (0x80000)
//     2^20 = 1,048,576 (0x100000)
//     2^21 = 2,097,152 (0x200000)
//     2^22 = 4,194,304 (0x400000)
//     2^23 = 8,388,608 (0x800000)
//     2^24 = 16,777,216 (0x1000000)
//     2^25 = 33,554,432 (0x2000000)
//     2^26 = 67,108,864 (0x4000000)
//     2^27 = 134,217,728 (0x8000000)
//     2^28 = 268,435,456 (0x10000000)
//     2^29 = 536,870,912 (0x20000000)
//     2^30 = 1,073,741,824 (0x40000000)
//     2^31 = 2,147,483,648 (0x80000000)
//     2^32 = 4,294,967,296 (0x100000000)
open System

let value = 2
for power = 0 to 32 do
    printfn $"{value}^{power} = {Math.Pow(value, power) |> int64:N0} (0x{Math.Pow(value, power) |> int64:X})"

// The example displays the following output:
//     2^0 = 1 (0x1)
//     2^1 = 2 (0x2)
//     2^2 = 4 (0x4)
//     2^3 = 8 (0x8)
//     2^4 = 16 (0x10)
//     2^5 = 32 (0x20)
//     2^6 = 64 (0x40)
//     2^7 = 128 (0x80)
//     2^8 = 256 (0x100)
//     2^9 = 512 (0x200)
//     2^10 = 1,024 (0x400)
//     2^11 = 2,048 (0x800)
//     2^12 = 4,096 (0x1000)
//     2^13 = 8,192 (0x2000)
//     2^14 = 16,384 (0x4000)
//     2^15 = 32,768 (0x8000)
//     2^16 = 65,536 (0x10000)
//     2^17 = 131,072 (0x20000)
//     2^18 = 262,144 (0x40000)
//     2^19 = 524,288 (0x80000)
//     2^20 = 1,048,576 (0x100000)
//     2^21 = 2,097,152 (0x200000)
//     2^22 = 4,194,304 (0x400000)
//     2^23 = 8,388,608 (0x800000)
//     2^24 = 16,777,216 (0x1000000)
//     2^25 = 33,554,432 (0x2000000)
//     2^26 = 67,108,864 (0x4000000)
//     2^27 = 134,217,728 (0x8000000)
//     2^28 = 268,435,456 (0x10000000)
//     2^29 = 536,870,912 (0x20000000)
//     2^30 = 1,073,741,824 (0x40000000)
//     2^31 = 2,147,483,648 (0x80000000)
//     2^32 = 4,294,967,296 (0x100000000)
Public Module Example
   Public Sub Main
      Dim value As Integer = 2
      For power As Integer = 0 To 32
         Console.WriteLine("{0}^{1} = {2:N0} (0x{2:X})", _
                           value, power, CLng(Math.Pow(value, power)))
      Next
   End Sub
End Module
' The example displays the following output:
'     2^0 = 1 (0x1)
'     2^1 = 2 (0x2)
'     2^2 = 4 (0x4)
'     2^3 = 8 (0x8)
'     2^4 = 16 (0x10)
'     2^5 = 32 (0x20)
'     2^6 = 64 (0x40)
'     2^7 = 128 (0x80)
'     2^8 = 256 (0x100)
'     2^9 = 512 (0x200)
'     2^10 = 1,024 (0x400)
'     2^11 = 2,048 (0x800)
'     2^12 = 4,096 (0x1000)
'     2^13 = 8,192 (0x2000)
'     2^14 = 16,384 (0x4000)
'     2^15 = 32,768 (0x8000)
'     2^16 = 65,536 (0x10000)
'     2^17 = 131,072 (0x20000)
'     2^18 = 262,144 (0x40000)
'     2^19 = 524,288 (0x80000)
'     2^20 = 1,048,576 (0x100000)
'     2^21 = 2,097,152 (0x200000)
'     2^22 = 4,194,304 (0x400000)
'     2^23 = 8,388,608 (0x800000)
'     2^24 = 16,777,216 (0x1000000)
'     2^25 = 33,554,432 (0x2000000)
'     2^26 = 67,108,864 (0x4000000)
'     2^27 = 134,217,728 (0x8000000)
'     2^28 = 268,435,456 (0x10000000)
'     2^29 = 536,870,912 (0x20000000)
'     2^30 = 1,073,741,824 (0x40000000)
'     2^31 = 2,147,483,648 (0x80000000)
'     2^32 = 4,294,967,296 (0x100000000)

Remarques

Le tableau suivant indique la valeur de retour lorsque différentes valeurs ou plages de valeurs sont spécifiées pour les x paramètres et y . Pour plus d'informations, consultez Double.PositiveInfinity, Double.NegativeInfinity et Double.NaN.

x y Valeur retournée
Toute valeur à l’exception de NaN ±0 1
NaN ±0 1 (NaN sur .NET Framework)*
NaN Toute valeur à l’exception de 0 NaN*
±0 < 0 et un entier impair NegativeInfinity ou PositiveInfinity
±0 NegativeInfinity PositiveInfinity
±0 PositiveInfinity +0
±0 > 0 et un entier impair ±0
-1 NegativeInfinity ou PositiveInfinity 1
+1 Toute valeur à l’exception de NaN 1
+1 NaN 1 (NaN sur .NET Framework)*
Toute valeur sauf 1 NaN NaN*
-1 < x < 1 PositiveInfinity +0
< -1 ou > 1 PositiveInfinity PositiveInfinity
-1 < x < 1 NegativeInfinity PositiveInfinity
< -1 ou > 1 NegativeInfinity +0
PositiveInfinity < 0 +0
PositiveInfinity > 0 PositiveInfinity
NegativeInfinity < 0 et entier fini et impair -0
NegativeInfinity > 0 et entier fini et impair NegativeInfinity
NegativeInfinity < 0 et fini et non un entier impair +0
NegativeInfinity > 0 et fini et non un entier impair PositiveInfinity
±0 < 0 et fini et non un entier impair PositiveInfinity
±0 > 0 et fini et non un entier impair +0
< 0 mais pas NegativeInfinity Non entier fini NaN

* Ces lignes n’apparaissent pas dans l’ensemble complet des règles pour pow telles que définies par la norme IEEE pour Floating-Point arithmétique. Ils sont inclus ici, car .NET désactive les exceptions à virgule flottante IEEE 754 et ne fait donc pas la différence entre qNaN (NaN silencieux) et sNaN (signal NaN). La spécification IEEE 754 autorise cette désactivation d’exception.

Cette méthode appelle le runtime C sous-jacent, et le résultat exact ou la plage d’entrée valide peut différer d’un système d’exploitation ou d’une architecture à l’autre.

S’applique à

Voir aussi