Math.Sin(Double) Méthode
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Retourne le sinus de l'angle spécifié.
public:
static double Sin(double a);
public static double Sin (double a);
static member Sin : double -> double
Public Shared Function Sin (a As Double) As Double
Paramètres
- a
- Double
Angle, mesuré en radians.
Retours
Sinus de a
. Si a
est égal à NaN, à NegativeInfinity ou à PositiveInfinity, cette méthode retourne NaN.
Exemples
L’exemple suivant utilise Sin pour évaluer certaines identités trigonométriques pour les angles sélectionnés.
// Example for the trigonometric Math.Sin( double )
// and Math.Cos( double ) methods.
using namespace System;
// Evaluate trigonometric identities with a given angle.
void UseSineCosine( double degrees )
{
double angle = Math::PI * degrees / 180.0;
double sinAngle = Math::Sin( angle );
double cosAngle = Math::Cos( angle );
// Evaluate sin^2(X) + cos^2(X) == 1.
Console::WriteLine( "\n Math::Sin({0} deg) == {1:E16}\n"
" Math::Cos({0} deg) == {2:E16}", degrees, Math::Sin( angle ), Math::Cos( angle ) );
Console::WriteLine( "(Math::Sin({0} deg))^2 + (Math::Cos({0} deg))^2 == {1:E16}", degrees, sinAngle * sinAngle + cosAngle * cosAngle );
// Evaluate sin(2 * X) == 2 * sin(X) * cos(X).
Console::WriteLine( " Math::Sin({0} deg) == {1:E16}", 2.0 * degrees, Math::Sin( 2.0 * angle ) );
Console::WriteLine( " 2 * Math::Sin({0} deg) * Math::Cos({0} deg) == {1:E16}", degrees, 2.0 * sinAngle * cosAngle );
// Evaluate cos(2 * X) == cos^2(X) - sin^2(X).
Console::WriteLine( " Math::Cos({0} deg) == {1:E16}", 2.0 * degrees, Math::Cos( 2.0 * angle ) );
Console::WriteLine( "(Math::Cos({0} deg))^2 - (Math::Sin({0} deg))^2 == {1:E16}", degrees, cosAngle * cosAngle - sinAngle * sinAngle );
}
// Evaluate trigonometric identities that are functions of two angles.
void UseTwoAngles( double degreesX, double degreesY )
{
double angleX = Math::PI * degreesX / 180.0;
double angleY = Math::PI * degreesY / 180.0;
// Evaluate sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y).
Console::WriteLine( "\n Math::Sin({0} deg) * Math::Cos({1} deg) +\n"
" Math::Cos({0} deg) * Math::Sin({1} deg) == {2:E16}", degreesX, degreesY, Math::Sin( angleX ) * Math::Cos( angleY ) + Math::Cos( angleX ) * Math::Sin( angleY ) );
Console::WriteLine( " Math::Sin({0} deg) == {1:E16}", degreesX + degreesY, Math::Sin( angleX + angleY ) );
// Evaluate cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y).
Console::WriteLine( " Math::Cos({0} deg) * Math::Cos({1} deg) -\n"
" Math::Sin({0} deg) * Math::Sin({1} deg) == {2:E16}", degreesX, degreesY, Math::Cos( angleX ) * Math::Cos( angleY ) - Math::Sin( angleX ) * Math::Sin( angleY ) );
Console::WriteLine( " Math::Cos({0} deg) == {1:E16}", degreesX + degreesY, Math::Cos( angleX + angleY ) );
}
int main()
{
Console::WriteLine( "This example of trigonometric "
"Math::Sin( double ) and Math::Cos( double )\n"
"generates the following output.\n" );
Console::WriteLine( "Convert selected values for X to radians \n"
"and evaluate these trigonometric identities:" );
Console::WriteLine( " sin^2(X) + cos^2(X) == 1\n"
" sin(2 * X) == 2 * sin(X) * cos(X)" );
Console::WriteLine( " cos(2 * X) == cos^2(X) - sin^2(X)" );
UseSineCosine( 15.0 );
UseSineCosine( 30.0 );
UseSineCosine( 45.0 );
Console::WriteLine( "\nConvert selected values for X and Y to radians \n"
"and evaluate these trigonometric identities:" );
Console::WriteLine( " sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)" );
Console::WriteLine( " cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)" );
UseTwoAngles( 15.0, 30.0 );
UseTwoAngles( 30.0, 45.0 );
}
/*
This example of trigonometric Math::Sin( double ) and Math::Cos( double )
generates the following output.
Convert selected values for X to radians
and evaluate these trigonometric identities:
sin^2(X) + cos^2(X) == 1
sin(2 * X) == 2 * sin(X) * cos(X)
cos(2 * X) == cos^2(X) - sin^2(X)
Math::Sin(15 deg) == 2.5881904510252074E-001
Math::Cos(15 deg) == 9.6592582628906831E-001
(Math::Sin(15 deg))^2 + (Math::Cos(15 deg))^2 == 1.0000000000000000E+000
Math::Sin(30 deg) == 4.9999999999999994E-001
2 * Math::Sin(15 deg) * Math::Cos(15 deg) == 4.9999999999999994E-001
Math::Cos(30 deg) == 8.6602540378443871E-001
(Math::Cos(15 deg))^2 - (Math::Sin(15 deg))^2 == 8.6602540378443871E-001
Math::Sin(30 deg) == 4.9999999999999994E-001
Math::Cos(30 deg) == 8.6602540378443871E-001
(Math::Sin(30 deg))^2 + (Math::Cos(30 deg))^2 == 1.0000000000000000E+000
Math::Sin(60 deg) == 8.6602540378443860E-001
2 * Math::Sin(30 deg) * Math::Cos(30 deg) == 8.6602540378443860E-001
Math::Cos(60 deg) == 5.0000000000000011E-001
(Math::Cos(30 deg))^2 - (Math::Sin(30 deg))^2 == 5.0000000000000022E-001
Math::Sin(45 deg) == 7.0710678118654746E-001
Math::Cos(45 deg) == 7.0710678118654757E-001
(Math::Sin(45 deg))^2 + (Math::Cos(45 deg))^2 == 1.0000000000000000E+000
Math::Sin(90 deg) == 1.0000000000000000E+000
2 * Math::Sin(45 deg) * Math::Cos(45 deg) == 1.0000000000000000E+000
Math::Cos(90 deg) == 6.1230317691118863E-017
(Math::Cos(45 deg))^2 - (Math::Sin(45 deg))^2 == 2.2204460492503131E-016
Convert selected values for X and Y to radians
and evaluate these trigonometric identities:
sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)
cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)
Math::Sin(15 deg) * Math::Cos(30 deg) +
Math::Cos(15 deg) * Math::Sin(30 deg) == 7.0710678118654746E-001
Math::Sin(45 deg) == 7.0710678118654746E-001
Math::Cos(15 deg) * Math::Cos(30 deg) -
Math::Sin(15 deg) * Math::Sin(30 deg) == 7.0710678118654757E-001
Math::Cos(45 deg) == 7.0710678118654757E-001
Math::Sin(30 deg) * Math::Cos(45 deg) +
Math::Cos(30 deg) * Math::Sin(45 deg) == 9.6592582628906831E-001
Math::Sin(75 deg) == 9.6592582628906820E-001
Math::Cos(30 deg) * Math::Cos(45 deg) -
Math::Sin(30 deg) * Math::Sin(45 deg) == 2.5881904510252085E-001
Math::Cos(75 deg) == 2.5881904510252096E-001
*/
// Example for the trigonometric Math.Sin( double )
// and Math.Cos( double ) methods.
using System;
class SinCos
{
public static void Main()
{
Console.WriteLine(
"This example of trigonometric " +
"Math.Sin( double ), Math.Cos( double ), and Math.SinCos( double )\n" +
"generates the following output.\n" );
Console.WriteLine(
"Convert selected values for X to radians \n" +
"and evaluate these trigonometric identities:" );
Console.WriteLine( " sin^2(X) + cos^2(X) == 1\n" +
" sin(2 * X) == 2 * sin(X) * cos(X)" );
Console.WriteLine( " cos(2 * X) == cos^2(X) - sin^2(X)" );
Console.WriteLine( " cos(2 * X) == cos^2(X) - sin^2(X)" );
UseSineCosine(15.0);
UseSineCosine(30.0);
UseSineCosine(45.0);
Console.WriteLine(
"\nConvert selected values for X and Y to radians \n" +
"and evaluate these trigonometric identities:" );
Console.WriteLine( " sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)" );
Console.WriteLine( " cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)" );
UseTwoAngles(15.0, 30.0);
UseTwoAngles(30.0, 45.0);
Console.WriteLine(
"\nWhen you have calls to sin(X) and cos(X) they \n" +
"can be replaced with a single call to sincos(x):" );
UseCombinedSineCosine(15.0);
UseCombinedSineCosine(30.0);
UseCombinedSineCosine(45.0);
}
// Evaluate trigonometric identities with a given angle.
static void UseCombinedSineCosine(double degrees)
{
double angle = Math.PI * degrees / 180.0;
(double sinAngle, double cosAngle) = Math.SinCos(angle);
// Evaluate sin^2(X) + cos^2(X) == 1.
Console.WriteLine(
"\n Math.SinCos({0} deg) == ({1:E16}, {2:E16})",
degrees, sinAngle, cosAngle);
Console.WriteLine(
"(double sin, double cos) = Math.SinCos({0} deg)",
degrees );
Console.WriteLine(
"sin^2 + cos^2 == {0:E16}",
sinAngle * sinAngle + cosAngle * cosAngle );
}
// Evaluate trigonometric identities with a given angle.
static void UseSineCosine(double degrees)
{
double angle = Math.PI * degrees / 180.0;
double sinAngle = Math.Sin(angle);
double cosAngle = Math.Cos(angle);
// Evaluate sin^2(X) + cos^2(X) == 1.
Console.WriteLine(
"\n Math.Sin({0} deg) == {1:E16}\n" +
" Math.Cos({0} deg) == {2:E16}",
degrees, Math.Sin(angle), Math.Cos(angle) );
Console.WriteLine(
"(Math.Sin({0} deg))^2 + (Math.Cos({0} deg))^2 == {1:E16}",
degrees, sinAngle * sinAngle + cosAngle * cosAngle );
// Evaluate sin(2 * X) == 2 * sin(X) * cos(X).
Console.WriteLine(
" Math.Sin({0} deg) == {1:E16}",
2.0 * degrees, Math.Sin(2.0 * angle) );
Console.WriteLine(
" 2 * Math.Sin({0} deg) * Math.Cos({0} deg) == {1:E16}",
degrees, 2.0 * sinAngle * cosAngle );
// Evaluate cos(2 * X) == cos^2(X) - sin^2(X).
Console.WriteLine(
" Math.Cos({0} deg) == {1:E16}",
2.0 * degrees, Math.Cos(2.0 * angle) );
Console.WriteLine(
"(Math.Cos({0} deg))^2 - (Math.Sin({0} deg))^2 == {1:E16}",
degrees, cosAngle * cosAngle - sinAngle * sinAngle );
}
// Evaluate trigonometric identities that are functions of two angles.
static void UseTwoAngles(double degreesX, double degreesY)
{
double angleX = Math.PI * degreesX / 180.0;
double angleY = Math.PI * degreesY / 180.0;
// Evaluate sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y).
Console.WriteLine(
"\n Math.Sin({0} deg) * Math.Cos({1} deg) +\n" +
" Math.Cos({0} deg) * Math.Sin({1} deg) == {2:E16}",
degreesX, degreesY, Math.Sin(angleX) * Math.Cos(angleY) +
Math.Cos(angleX) * Math.Sin(angleY));
Console.WriteLine(
" Math.Sin({0} deg) == {1:E16}",
degreesX + degreesY, Math.Sin(angleX + angleY));
// Evaluate cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y).
Console.WriteLine(
" Math.Cos({0} deg) * Math.Cos({1} deg) -\n" +
" Math.Sin({0} deg) * Math.Sin({1} deg) == {2:E16}",
degreesX, degreesY, Math.Cos(angleX) * Math.Cos(angleY) -
Math.Sin(angleX) * Math.Sin(angleY));
Console.WriteLine(
" Math.Cos({0} deg) == {1:E16}",
degreesX + degreesY, Math.Cos(angleX + angleY));
}
}
/*
This example of trigonometric Math.Sin( double ) and Math.Cos( double )
generates the following output.
Convert selected values for X to radians
and evaluate these trigonometric identities:
sin^2(X) + cos^2(X) == 1
sin(2 * X) == 2 * sin(X) * cos(X)
cos(2 * X) == cos^2(X) - sin^2(X)
Math.Sin(15 deg) == 2.5881904510252074E-001
Math.Cos(15 deg) == 9.6592582628906831E-001
(Math.Sin(15 deg))^2 + (Math.Cos(15 deg))^2 == 1.0000000000000000E+000
Math.Sin(30 deg) == 4.9999999999999994E-001
2 * Math.Sin(15 deg) * Math.Cos(15 deg) == 4.9999999999999994E-001
Math.Cos(30 deg) == 8.6602540378443871E-001
(Math.Cos(15 deg))^2 - (Math.Sin(15 deg))^2 == 8.6602540378443871E-001
Math.Sin(30 deg) == 4.9999999999999994E-001
Math.Cos(30 deg) == 8.6602540378443871E-001
(Math.Sin(30 deg))^2 + (Math.Cos(30 deg))^2 == 1.0000000000000000E+000
Math.Sin(60 deg) == 8.6602540378443860E-001
2 * Math.Sin(30 deg) * Math.Cos(30 deg) == 8.6602540378443860E-001
Math.Cos(60 deg) == 5.0000000000000011E-001
(Math.Cos(30 deg))^2 - (Math.Sin(30 deg))^2 == 5.0000000000000022E-001
Math.Sin(45 deg) == 7.0710678118654746E-001
Math.Cos(45 deg) == 7.0710678118654757E-001
(Math.Sin(45 deg))^2 + (Math.Cos(45 deg))^2 == 1.0000000000000000E+000
Math.Sin(90 deg) == 1.0000000000000000E+000
2 * Math.Sin(45 deg) * Math.Cos(45 deg) == 1.0000000000000000E+000
Math.Cos(90 deg) == 6.1230317691118863E-017
(Math.Cos(45 deg))^2 - (Math.Sin(45 deg))^2 == 2.2204460492503131E-016
Convert selected values for X and Y to radians
and evaluate these trigonometric identities:
sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)
cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)
Math.Sin(15 deg) * Math.Cos(30 deg) +
Math.Cos(15 deg) * Math.Sin(30 deg) == 7.0710678118654746E-001
Math.Sin(45 deg) == 7.0710678118654746E-001
Math.Cos(15 deg) * Math.Cos(30 deg) -
Math.Sin(15 deg) * Math.Sin(30 deg) == 7.0710678118654757E-001
Math.Cos(45 deg) == 7.0710678118654757E-001
Math.Sin(30 deg) * Math.Cos(45 deg) +
Math.Cos(30 deg) * Math.Sin(45 deg) == 9.6592582628906831E-001
Math.Sin(75 deg) == 9.6592582628906820E-001
Math.Cos(30 deg) * Math.Cos(45 deg) -
Math.Sin(30 deg) * Math.Sin(45 deg) == 2.5881904510252085E-001
Math.Cos(75 deg) == 2.5881904510252096E-001
*/
// Example for the trigonometric Math.Sin( double )
// and Math.Cos( double ) methods.
// In F#, the sin and cos functions may be used instead.
open System
// Evaluate trigonometric identities with a given angle.
let useSineCosine degrees =
let angle = Math.PI * degrees / 180.
let sinAngle = Math.Sin angle
let cosAngle = Math.Cos angle
// Evaluate sin^2(X) + cos^2(X) = 1.
printfn $"""
Math.Sin({degrees} deg) = {Math.Sin angle:E16}
Math.Cos({degrees} deg) = {Math.Cos angle:E16}"""
printfn $"(Math.Sin({degrees} deg))^2 + (Math.Cos({degrees} deg))^2 = {sinAngle * sinAngle + cosAngle * cosAngle:E16}"
// Evaluate sin(2 * X) = 2 * sin(X) * cos(X).
printfn $" Math.Sin({2. * degrees} deg) = {Math.Sin(2. * angle):E16}"
printfn $" 2 * Math.Sin({degrees} deg) * Math.Cos({degrees} deg) = {2. * sinAngle * cosAngle:E16}"
// Evaluate cos(2 * X) = cos^2(X) - sin^2(X).
printfn $" Math.Cos({2. * degrees} deg) = {Math.Cos(2. * angle):E16}"
printfn $"(Math.Cos({degrees} deg))^2 - (Math.Sin({degrees} deg))^2 = {cosAngle * cosAngle - sinAngle * sinAngle:E16}"
// Evaluate trigonometric identities that are functions of two angles.
let useTwoAngles degreesX degreesY =
let angleX = Math.PI * degreesX / 180.
let angleY = Math.PI * degreesY / 180.
// Evaluate sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y).
printfn $"""
Math.Sin({degreesX} deg) * Math.Cos({degreesY} deg)
Math.Cos({degreesX} deg) * Math.Sin({degreesY} deg) = {Math.Sin angleX * Math.Cos angleY + Math.Cos angleX * Math.Sin angleY:E16}"""
printfn $" Math.Sin({degreesX + degreesY} deg) = {Math.Sin(angleX + angleY):E16}"
// Evaluate cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y).
printfn
$""" Math.Cos({degreesX} deg) * Math.Cos({degreesY} deg) -
Math.Sin({degreesX} deg) * Math.Sin({degreesY} deg) = {Math.Cos angleX * Math.Cos angleY - Math.Sin angleX * Math.Sin angleY:E16}"""
printfn $" Math.Cos({degreesX + degreesY} deg) = {Math.Cos(angleX + angleY):E16}"
// Evaluate trigonometric identities with a given angle.
let useCombinedSineCosine degrees =
let angle = Math.PI * degrees / 180.
let struct(sinAngle, cosAngle) = Math.SinCos angle
// Evaluate sin^2(X) + cos^2(X) = 1.
printfn $"\n Math.SinCos({degrees} deg) = ({sinAngle:E16}, {cosAngle:E16})"
printfn $"(double sin, double cos) = Math.SinCos({degrees} deg)"
printfn $"sin^2 + cos^2 = {sinAngle * sinAngle + cosAngle * cosAngle:E16}"
printfn
"""This example of trigonometric
Math.Sin( double ), Math.Cos( double ), and Math.SinCos( double )
generates the following output.
Convert selected values for X to radians
and evaluate these trigonometric identities:
sin^2(X) + cos^2(X) = 1\n sin(2 * X) = 2 * sin(X) * cos(X)
cos(2 * X) = cos^2(X) - sin^2(X)
cos(2 * X) = cos^2(X) - sin^2(X)
"""
useSineCosine 15.
useSineCosine 30.
useSineCosine 45.
printfn """
Convert selected values for X and Y to radians
and evaluate these trigonometric identities:
sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y)
cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y)
"""
useTwoAngles 15. 30.
useTwoAngles 30. 45.
printfn """
When you have calls to sin(X) and cos(X) they
can be replaced with a single call to sincos(x):"""
useCombinedSineCosine 15.
useCombinedSineCosine 30.
useCombinedSineCosine 45.
// This example of trigonometric Math.Sin( double ) and Math.Cos( double )
// generates the following output.
//
// Convert selected values for X to radians
// and evaluate these trigonometric identities:
// sin^2(X) + cos^2(X) = 1
// sin(2 * X) = 2 * sin(X) * cos(X)
// cos(2 * X) = cos^2(X) - sin^2(X)
//
// Math.Sin(15 deg) = 2.5881904510252074E-001
// Math.Cos(15 deg) = 9.6592582628906831E-001
// (Math.Sin(15 deg))^2 + (Math.Cos(15 deg))^2 = 1.0000000000000000E+000
// Math.Sin(30 deg) = 4.9999999999999994E-001
// 2 * Math.Sin(15 deg) * Math.Cos(15 deg) = 4.9999999999999994E-001
// Math.Cos(30 deg) = 8.6602540378443871E-001
// (Math.Cos(15 deg))^2 - (Math.Sin(15 deg))^2 = 8.6602540378443871E-001
//
// Math.Sin(30 deg) = 4.9999999999999994E-001
// Math.Cos(30 deg) = 8.6602540378443871E-001
// (Math.Sin(30 deg))^2 + (Math.Cos(30 deg))^2 = 1.0000000000000000E+000
// Math.Sin(60 deg) = 8.6602540378443860E-001
// 2 * Math.Sin(30 deg) * Math.Cos(30 deg) = 8.6602540378443860E-001
// Math.Cos(60 deg) = 5.0000000000000011E-001
// (Math.Cos(30 deg))^2 - (Math.Sin(30 deg))^2 = 5.0000000000000022E-001
//
// Math.Sin(45 deg) = 7.0710678118654746E-001
// Math.Cos(45 deg) = 7.0710678118654757E-001
// (Math.Sin(45 deg))^2 + (Math.Cos(45 deg))^2 = 1.0000000000000000E+000
// Math.Sin(90 deg) = 1.0000000000000000E+000
// 2 * Math.Sin(45 deg) * Math.Cos(45 deg) = 1.0000000000000000E+000
// Math.Cos(90 deg) = 6.1230317691118863E-017
// (Math.Cos(45 deg))^2 - (Math.Sin(45 deg))^2 = 2.2204460492503131E-016
//
// Convert selected values for X and Y to radians
// and evaluate these trigonometric identities:
// sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y)
// cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y)
//
// Math.Sin(15 deg) * Math.Cos(30 deg) +
// Math.Cos(15 deg) * Math.Sin(30 deg) = 7.0710678118654746E-001
// Math.Sin(45 deg) = 7.0710678118654746E-001
// Math.Cos(15 deg) * Math.Cos(30 deg) -
// Math.Sin(15 deg) * Math.Sin(30 deg) = 7.0710678118654757E-001
// Math.Cos(45 deg) = 7.0710678118654757E-001
//
// Math.Sin(30 deg) * Math.Cos(45 deg) +
// Math.Cos(30 deg) * Math.Sin(45 deg) = 9.6592582628906831E-001
// Math.Sin(75 deg) = 9.6592582628906820E-001
// Math.Cos(30 deg) * Math.Cos(45 deg) -
// Math.Sin(30 deg) * Math.Sin(45 deg) = 2.5881904510252085E-001
// Math.Cos(75 deg) = 2.5881904510252096E-001
' Example for the trigonometric Math.Sin( Double ) and Math.Cos( Double ) methods.
Module SinCos
Sub Main()
Console.WriteLine( _
"This example of trigonometric " & _
"Math.Sin( double ) and Math.Cos( double )" & vbCrLf & _
"generates the following output." & vbCrLf)
Console.WriteLine( _
"Convert selected values for X to radians " & vbCrLf & _
"and evaluate these trigonometric identities:")
Console.WriteLine( _
" sin^2(X) + cos^2(X) = 1" & vbCrLf & _
" sin(2 * X) = 2 * sin(X) * cos(X)")
Console.WriteLine(" cos(2 * X) = cos^2(X) - sin^2(X)")
UseSineCosine(15.0)
UseSineCosine(30.0)
UseSineCosine(45.0)
Console.WriteLine( _
vbCrLf & "Convert selected values for X and Y to radians" & _
vbCrLf & "and evaluate these trigonometric identities:")
Console.WriteLine(" sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y)")
Console.WriteLine(" cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y)")
UseTwoAngles(15.0, 30.0)
UseTwoAngles(30.0, 45.0)
End Sub
' Evaluate trigonometric identities with a given angle.
Sub UseSineCosine(degrees As Double)
Dim angle As Double = Math.PI * degrees / 180.0
Dim sinAngle As Double = Math.Sin(angle)
Dim cosAngle As Double = Math.Cos(angle)
' Evaluate sin^2(X) + cos^2(X) = 1.
Console.WriteLine( _
vbCrLf & " Math.Sin({0} deg) = {1:E16}" & _
vbCrLf & " Math.Cos({0} deg) = {2:E16}", _
degrees, Math.Sin(angle), Math.Cos(angle))
Console.WriteLine( _
"(Math.Sin({0} deg))^2 + (Math.Cos({0} deg))^2 = {1:E16}", _
degrees, sinAngle * sinAngle + cosAngle * cosAngle)
' Evaluate sin(2 * X) = 2 * sin(X) * cos(X).
Console.WriteLine( _
" Math.Sin({0} deg) = {1:E16}", _
2.0 * degrees, Math.Sin(2.0 * angle))
Console.WriteLine( _
" 2 * Math.Sin({0} deg) * Math.Cos({0} deg) = {1:E16}", _
degrees, 2.0 * sinAngle * cosAngle)
' Evaluate cos(2 * X) = cos^2(X) - sin^2(X).
Console.WriteLine( _
" Math.Cos({0} deg) = {1:E16}", _
2.0 * degrees, Math.Cos(2.0 * angle))
Console.WriteLine( _
"(Math.Cos({0} deg))^2 - (Math.Sin({0} deg))^2 = {1:E16}", _
degrees, cosAngle * cosAngle - sinAngle * sinAngle)
End Sub
' Evaluate trigonometric identities that are functions of two angles.
Sub UseTwoAngles(degreesX As Double, degreesY As Double)
Dim angleX As Double = Math.PI * degreesX / 180.0
Dim angleY As Double = Math.PI * degreesY / 180.0
' Evaluate sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y).
Console.WriteLine( _
vbCrLf & " Math.Sin({0} deg) * Math.Cos({1} deg) +" & _
vbCrLf & " Math.Cos({0} deg) * Math.Sin({1} deg) = {2:E16}", _
degreesX, degreesY, Math.Sin(angleX) * Math.Cos(angleY) + _
Math.Cos(angleX) * Math.Sin(angleY))
Console.WriteLine( _
" Math.Sin({0} deg) = {1:E16}", _
degreesX + degreesY, Math.Sin(angleX + angleY))
' Evaluate cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y).
Console.WriteLine( _
" Math.Cos({0} deg) * Math.Cos({1} deg) -" & vbCrLf & _
" Math.Sin({0} deg) * Math.Sin({1} deg) = {2:E16}", _
degreesX, degreesY, Math.Cos(angleX) * Math.Cos(angleY) - _
Math.Sin(angleX) * Math.Sin(angleY))
Console.WriteLine( _
" Math.Cos({0} deg) = {1:E16}", _
degreesX + degreesY, Math.Cos(angleX + angleY))
End Sub
End Module 'SinCos
' This example of trigonometric Math.Sin( double ) and Math.Cos( double )
' generates the following output.
'
' Convert selected values for X to radians
' and evaluate these trigonometric identities:
' sin^2(X) + cos^2(X) = 1
' sin(2 * X) = 2 * sin(X) * cos(X)
' cos(2 * X) = cos^2(X) - sin^2(X)
'
' Math.Sin(15 deg) = 2.5881904510252074E-001
' Math.Cos(15 deg) = 9.6592582628906831E-001
' (Math.Sin(15 deg))^2 + (Math.Cos(15 deg))^2 = 1.0000000000000000E+000
' Math.Sin(30 deg) = 4.9999999999999994E-001
' 2 * Math.Sin(15 deg) * Math.Cos(15 deg) = 4.9999999999999994E-001
' Math.Cos(30 deg) = 8.6602540378443871E-001
' (Math.Cos(15 deg))^2 - (Math.Sin(15 deg))^2 = 8.6602540378443871E-001
'
' Math.Sin(30 deg) = 4.9999999999999994E-001
' Math.Cos(30 deg) = 8.6602540378443871E-001
' (Math.Sin(30 deg))^2 + (Math.Cos(30 deg))^2 = 1.0000000000000000E+000
' Math.Sin(60 deg) = 8.6602540378443860E-001
' 2 * Math.Sin(30 deg) * Math.Cos(30 deg) = 8.6602540378443860E-001
' Math.Cos(60 deg) = 5.0000000000000011E-001
' (Math.Cos(30 deg))^2 - (Math.Sin(30 deg))^2 = 5.0000000000000022E-001
'
' Math.Sin(45 deg) = 7.0710678118654746E-001
' Math.Cos(45 deg) = 7.0710678118654757E-001
' (Math.Sin(45 deg))^2 + (Math.Cos(45 deg))^2 = 1.0000000000000000E+000
' Math.Sin(90 deg) = 1.0000000000000000E+000
' 2 * Math.Sin(45 deg) * Math.Cos(45 deg) = 1.0000000000000000E+000
' Math.Cos(90 deg) = 6.1230317691118863E-017
' (Math.Cos(45 deg))^2 - (Math.Sin(45 deg))^2 = 2.2204460492503131E-016
'
' Convert selected values for X and Y to radians
' and evaluate these trigonometric identities:
' sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y)
' cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y)
'
' Math.Sin(15 deg) * Math.Cos(30 deg) +
' Math.Cos(15 deg) * Math.Sin(30 deg) = 7.0710678118654746E-001
' Math.Sin(45 deg) = 7.0710678118654746E-001
' Math.Cos(15 deg) * Math.Cos(30 deg) -
' Math.Sin(15 deg) * Math.Sin(30 deg) = 7.0710678118654757E-001
' Math.Cos(45 deg) = 7.0710678118654757E-001
'
' Math.Sin(30 deg) * Math.Cos(45 deg) +
' Math.Cos(30 deg) * Math.Sin(45 deg) = 9.6592582628906831E-001
' Math.Sin(75 deg) = 9.6592582628906820E-001
' Math.Cos(30 deg) * Math.Cos(45 deg) -
' Math.Sin(30 deg) * Math.Sin(45 deg) = 2.5881904510252085E-001
' Math.Cos(75 deg) = 2.5881904510252096E-001
Remarques
L’angle, a
, doit être en radians. Multipliez par Math.PI/180 pour convertir les degrés en radians.
Cette méthode appelle le runtime C sous-jacent, et le résultat exact ou la plage d’entrée valide peut différer d’un système d’exploitation ou d’une architecture à l’autre.