lognormal_distribution Class
The latest version of this topic can be found at lognormal_distribution Class.
Generates a log normal distribution.
Syntax
class lognormal_distribution
{
public: // types
typedef RealType result_type;
struct param_type; // constructor and reset functions
explicit lognormal_distribution(RealType m = 0.0, RealType s = 1.0);
explicit lognormal_distribution(const param_type& parm);
void reset();
// generating functions
template <class URNG>
result_type operator()(URNG& gen);
template <class URNG>
result_type operator()(URNG& gen, const param_type& parm);
// property functions
RealType m() const;
RealType s() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
};
Parameters
RealType
The floating-point result type, defaults to double
. For possible types, see <random>.
Remarks
The template class describes a distribution that produces values of a user-specified integral type, or type double
if none is provided, distributed according to the Log Normal Distribution. The following table links to articles about individual members.
lognormal_distribution::lognormal_distribution | lognormal_distribution::m |
lognormal_distribution::param |
lognormal_distribution::operator() |
lognormal_distribution::s |
lognormal_distribution::param_type |
The property functions m()
and s()
return the values for the stored distribution parameters m
and s
respectively.
For more information about distribution classes and their members, see <random>.
For detailed information about the LogNormal distribution, see the Wolfram MathWorld article LogNormal Distribution.
Example
// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>
using namespace std;
void test(const double m, const double s, const int samples) {
// uncomment to use a non-deterministic seed
// random_device gen;
// mt19937 gen(rd());
mt19937 gen(1701);
lognormal_distribution<> distr(m, s);
cout << endl;
cout << "min() == " << distr.min() << endl;
cout << "max() == " << distr.max() << endl;
cout << "m() == " << fixed << setw(11) << setprecision(10) << distr.m() << endl;
cout << "s() == " << fixed << setw(11) << setprecision(10) << distr.s() << endl;
// generate the distribution as a histogram
map<double, int> histogram;
for (int i = 0; i < samples; ++i) {
++histogram[distr(gen)];
}
// print results
cout << "Distribution for " << samples << " samples:" << endl;
int counter = 0;
for (const auto& elem : histogram) {
cout << fixed << setw(11) << ++counter << ": "
<< setw(14) << setprecision(10) << elem.first << endl;
}
cout << endl;
}
int main()
{
double m_dist = 1;
double s_dist = 1;
int samples = 10;
cout << "Use CTRL-Z to bypass data entry and run using default values." << endl;
cout << "Enter a floating point value for the 'm' distribution parameter: ";
cin >> m_dist;
cout << "Enter a floating point value for the 's' distribution parameter (must be greater than zero): ";
cin >> s_dist;
cout << "Enter an integer value for the sample count: ";
cin >> samples;
test(m_dist, s_dist, samples);
}
Output
Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'm' distribution parameter: 0
Enter a floating point value for the 's' distribution parameter (must be greater than zero): 1
Enter an integer value for the sample count: 10
min() == -1.79769e+308
max() == 1.79769e+308
m() == 0.0000000000
s() == 1.0000000000
Distribution for 10 samples:
1: 0.3862809339
2: 0.4128865601
3: 0.4490576787
4: 0.4862035428
5: 0.5930607126
6: 0.8190778771
7: 0.8902379317
8: 2.8332911667
9: 5.1359445565
10: 5.4406507912
Requirements
Header: <random>
Namespace: std
lognormal_distribution::lognormal_distribution
Constructs the distribution.
explicit lognormal_distribution(RealType m = 0.0, RealType s = 1.0);
explicit lognormal_distribution(const param_type& parm);
Parameters
m
The m
distribution parameter.
s
The s
distribution parameter.
parm
The parameter structure used to construct the distribution.
Remarks
Precondition: 0.0 < s
The first constructor constructs an object whose stored m
value holds the value m
and whose stored s
value holds the value s
.
The second constructor constructs an object whose stored parameters are initialized from parm
. You can obtain and set the current parameters of an existing distribution by calling the param()
member function.
lognormal_distribution::param_type
Stores the parameters of the distribution.
struct param_type {
typedef lognormal_distribution<RealType> distribution_type;
param_type(RealType m = 0.0, RealType s = 1.0);
RealType m() const;
RealType s() const;
.....
bool operator==(const param_type& right) const;
bool operator!=(const param_type& right) const;
};
Parameters
See parent topic lognormal_distribution Class.
Remarks
Precondition: 0.0 < s
This structure can be passed to the distribution's class constructor at instantiation, to the param()
member function to set the stored parameters of an existing distribution, and to operator()
to be used in place of the stored parameters.