Microsoft.MachineLearningServices 工作區/作業 2022-05-01
- 最新
- 2024-10-01
- 2024-10-01-preview
- 2024-07-01-preview
- 2024-04-01
- 2024-04-01-preview
- 2024-01-01-preview
- 2023-10-01
- 2023-08-01-preview
- 2023-06-01-preview
- 2023-04-01
- 2023-04-01-preview
- 2023-02-01-preview
- 2022-12-01-preview
- 2022-10-01
- 2022-10-01-preview
- 2022-06-01-preview
- 2022-05-01
- 2022-02-01-preview
- 2021-03-01-preview
Bicep 資源定義
工作區/作業資源類型可以使用目標作業來部署:
- 資源群組 - 請參閱 資源群組部署命令
如需每個 API 版本中已變更屬性的清單,請參閱 變更記錄檔。
資源格式
若要建立 Microsoft.MachineLearningServices/workspaces/jobs 資源,請將下列 Bicep 新增至範本。
resource symbolicname 'Microsoft.MachineLearningServices/workspaces/jobs@2022-05-01' = {
parent: resourceSymbolicName
name: 'string'
properties: {
computeId: 'string'
description: 'string'
displayName: 'string'
experimentName: 'string'
identity: {
identityType: 'string'
// For remaining properties, see IdentityConfiguration objects
}
isArchived: bool
properties: {
{customized property}: 'string'
}
services: {
{customized property}: {
endpoint: 'string'
jobServiceType: 'string'
port: int
properties: {
{customized property}: 'string'
}
}
}
tags: {
{customized property}: 'string'
}
jobType: 'string'
// For remaining properties, see JobBaseProperties objects
}
}
JobBaseProperties 物件
設定 jobType 屬性,以指定物件的類型。
針對 Command,請使用:
{
codeId: 'string'
command: 'string'
distribution: {
distributionType: 'string'
// For remaining properties, see DistributionConfiguration objects
}
environmentId: 'string'
environmentVariables: {
{customized property}: 'string'
}
inputs: {
{customized property}: {
description: 'string'
jobInputType: 'string'
// For remaining properties, see JobInput objects
}
}
jobType: 'Command'
limits: {
jobLimitsType: 'string'
timeout: 'string'
}
outputs: {
{customized property}: {
description: 'string'
jobOutputType: 'string'
// For remaining properties, see JobOutput objects
}
}
resources: {
instanceCount: int
instanceType: 'string'
properties: {
{customized property}: any(Azure.Bicep.Types.Concrete.AnyType)
}
}
}
針對 Pipeline,請使用:
{
inputs: {
{customized property}: {
description: 'string'
jobInputType: 'string'
// For remaining properties, see JobInput objects
}
}
jobs: {
{customized property}: any(Azure.Bicep.Types.Concrete.AnyType)
}
jobType: 'Pipeline'
outputs: {
{customized property}: {
description: 'string'
jobOutputType: 'string'
// For remaining properties, see JobOutput objects
}
}
settings: any(Azure.Bicep.Types.Concrete.AnyType)
}
針對 掃掠,請使用:
{
earlyTermination: {
delayEvaluation: int
evaluationInterval: int
policyType: 'string'
// For remaining properties, see EarlyTerminationPolicy objects
}
inputs: {
{customized property}: {
description: 'string'
jobInputType: 'string'
// For remaining properties, see JobInput objects
}
}
jobType: 'Sweep'
limits: {
jobLimitsType: 'string'
maxConcurrentTrials: int
maxTotalTrials: int
timeout: 'string'
trialTimeout: 'string'
}
objective: {
goal: 'string'
primaryMetric: 'string'
}
outputs: {
{customized property}: {
description: 'string'
jobOutputType: 'string'
// For remaining properties, see JobOutput objects
}
}
samplingAlgorithm: {
samplingAlgorithmType: 'string'
// For remaining properties, see SamplingAlgorithm objects
}
searchSpace: any(Azure.Bicep.Types.Concrete.AnyType)
trial: {
codeId: 'string'
command: 'string'
distribution: {
distributionType: 'string'
// For remaining properties, see DistributionConfiguration objects
}
environmentId: 'string'
environmentVariables: {
{customized property}: 'string'
}
resources: {
instanceCount: int
instanceType: 'string'
properties: {
{customized property}: any(Azure.Bicep.Types.Concrete.AnyType)
}
}
}
}
IdentityConfiguration 物件
設定 identityType 屬性
針對 AMLToken,請使用:
{
identityType: 'AMLToken'
}
針對 Managed,請使用:
{
clientId: 'string'
identityType: 'Managed'
objectId: 'string'
resourceId: 'string'
}
針對 UserIdentity,請使用:
{
identityType: 'UserIdentity'
}
DistributionConfiguration 物件
設定 distributionType 屬性,以指定對象的類型。
針對 Mpi,請使用:
{
distributionType: 'Mpi'
processCountPerInstance: int
}
針對 PyTorch,請使用:
{
distributionType: 'PyTorch'
processCountPerInstance: int
}
針對 TensorFlow,請使用:
{
distributionType: 'TensorFlow'
parameterServerCount: int
workerCount: int
}
EarlyTerminationPolicy 物件
設定 policyType 屬性,以指定對象的類型。
針對 Bandit,請使用:
{
policyType: 'Bandit'
slackAmount: int
slackFactor: int
}
針對 MedianStopping,請使用:
{
policyType: 'MedianStopping'
}
針對 TruncationSelection,請使用:
{
policyType: 'TruncationSelection'
truncationPercentage: int
}
JobInput 物件
設定 jobInputType 屬性,以指定物件的類型。
針對 custom_model,請使用:
{
jobInputType: 'custom_model'
mode: 'string'
uri: 'string'
}
針對 常值,請使用:
{
jobInputType: 'literal'
value: 'string'
}
針對 mlflow_model,請使用:
{
jobInputType: 'mlflow_model'
mode: 'string'
uri: 'string'
}
針對 mltable,請使用:
{
jobInputType: 'mltable'
mode: 'string'
uri: 'string'
}
針對 triton_model,請使用:
{
jobInputType: 'triton_model'
mode: 'string'
uri: 'string'
}
針對 uri_file,請使用:
{
jobInputType: 'uri_file'
mode: 'string'
uri: 'string'
}
針對 uri_folder,請使用:
{
jobInputType: 'uri_folder'
mode: 'string'
uri: 'string'
}
JobOutput 物件
設定 jobOutputType 屬性,以指定物件的類型。
針對 custom_model,請使用:
{
jobOutputType: 'custom_model'
mode: 'string'
uri: 'string'
}
針對 mlflow_model,請使用:
{
jobOutputType: 'mlflow_model'
mode: 'string'
uri: 'string'
}
針對 mltable,請使用:
{
jobOutputType: 'mltable'
mode: 'string'
uri: 'string'
}
針對 triton_model,請使用:
{
jobOutputType: 'triton_model'
mode: 'string'
uri: 'string'
}
針對 uri_file,請使用:
{
jobOutputType: 'uri_file'
mode: 'string'
uri: 'string'
}
針對 uri_folder,請使用:
{
jobOutputType: 'uri_folder'
mode: 'string'
uri: 'string'
}
SamplingAlgorithm 物件
設定 samplingAlgorithmType 屬性,以指定對象的類型。
針對 貝氏,請使用:
{
samplingAlgorithmType: 'Bayesian'
}
針對 Grid,請使用:
{
samplingAlgorithmType: 'Grid'
}
針對 Random,請使用:
{
rule: 'string'
samplingAlgorithmType: 'Random'
seed: int
}
屬性值
AmlToken
名字 | 描述 | 價值 |
---|---|---|
identityType | [必要]指定身分識別架構的類型。 | 'AMLToken' (必要) |
BanditPolicy
名字 | 描述 | 價值 |
---|---|---|
policyType | [必要]原則設定的名稱 | “強盜”(必要) |
slackAmount | 從最佳執行執行中允許的絕對距離。 | int |
slackFactor | 與最佳執行距離的允許距離比率。 | int |
BayesianSamplingAlgorithm
名字 | 描述 | 價值 |
---|---|---|
samplingAlgorithmType | [必要]用來產生超參數值的演算法,以及組態屬性 | “貝氏” (必要) |
CommandJob
名字 | 描述 | 價值 |
---|---|---|
codeId | 程式代碼資產的 ARM 資源識別碼。 | 字串 |
命令 | [必要]在作業啟動時執行的命令。 例如 “python train.py” | 字串 約束: 最小長度 = 1 模式 = [a-zA-Z0-9_] (必要) |
分配 | 作業的散發組態。 如果設定,這應該是其中一個 Mpi、Tensorflow、PyTorch 或 null。 | DistributionConfiguration |
environmentId | [必要]作業之環境規格的 ARM 資源識別碼。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
environmentVariables | 作業中包含的環境變數。 | CommandJobEnvironmentVariables |
輸入 | 對應作業中使用的輸入數據系結。 | CommandJobInputs |
jobType | [必要]指定作業的類型。 | 'Command' (必要) |
限制 | 命令作業限制。 | CommandJobLimits |
輸出 | 對應作業中使用的輸出數據系結。 | CommandJobOutputs |
資源 | 作業的計算資源組態。 | ResourceConfiguration |
CommandJobEnvironmentVariables
名字 | 描述 | 價值 |
---|
CommandJobInputs
名字 | 描述 | 價值 |
---|
CommandJobLimits
名字 | 描述 | 價值 |
---|---|---|
jobLimitsType | [必要]JobLimit 類型。 | 'Command' '掃掠' (必要) |
超時 | ISO 8601 格式的最大執行持續時間,之後作業將會取消。 僅支援有效位數為秒數的持續時間。 | 字串 |
CommandJobOutputs
名字 | 描述 | 價值 |
---|
CustomModelJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'custom_model' (必要) |
模式 | 輸入資產傳遞模式。 | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [必要]輸入資產 URI。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
CustomModelJobOutput
名字 | 描述 | 價值 |
---|---|---|
jobOutputType | [必要]指定作業的類型。 | 'custom_model' (必要) |
模式 | 輸出資產傳遞模式。 | 'ReadWriteMount' 'Upload' |
uri | 輸出資產 URI。 | 字串 |
DistributionConfiguration
名字 | 描述 | 價值 |
---|---|---|
distributionType | 將 類型設定為 'Mpi',Mpi。 將 類型設定為 'PyTorch',PyTorch。 針對 tensorFlow 類型 設定為 'TensorFlow',。 | 'Mpi' 'PyTorch' 'TensorFlow' (必要) |
EarlyTerminationPolicy
名字 | 描述 | 價值 |
---|---|---|
delayEvaluation | 延遲第一次評估的間隔數目。 | int |
evaluationInterval | 原則評估之間的間隔(執行次數)。 | int |
policyType | 針對 BanditPolicy 類型設定為 'BanditPolicy',。 針對 type MedianStoppingPolicy設定為 'MedianStopping'。 針對類型 TruncationSelectionPolicy,設定為 『TruncationSelection』。 | “強盜” 'MedianStopping' 'TruncationSelection' (必要) |
GridSamplingAlgorithm
名字 | 描述 | 價值 |
---|---|---|
samplingAlgorithmType | [必要]用來產生超參數值的演算法,以及組態屬性 | 'Grid' (必要) |
IdentityConfiguration
名字 | 描述 | 價值 |
---|---|---|
identityType | 針對 AmlToken 類型 設定為 'AMLToken',。 針對 managedIdentity 類型 設定為 'Managed',。 將 類型設定為 'UserIdentity' UserIdentity。 | 'AMLToken' 'Managed' 'UserIdentity' (必要) |
JobBaseProperties
名字 | 描述 | 價值 |
---|---|---|
computeId | 計算資源的 ARM 資源識別碼。 | 字串 |
描述 | 資產描述文字。 | 字串 |
displayName | 工作的顯示名稱。 | 字串 |
experimentName | 作業所屬的實驗名稱。 如果未設定,作業會放在 「默認」實驗中。 | 字串 |
身份 | 身分識別設定。 如果設定,這應該是其中一個 AmlToken、ManagedIdentity、UserIdentity 或 null。 如果為 null,則預設為 AmlToken。 |
IdentityConfiguration |
isArchived | 資產是否已封存? | bool |
jobType | 設定為'Command' 類型 CommandJob。 將 類型設定為 'Pipeline',PipelineJob。 設定為 [掃掠] 類型為 SweepJob。 | 'Command' 'Pipeline' '掃掠' (必要) |
性能 | 資產屬性字典。 | ResourceBaseProperties |
服務業 | JobEndpoints 的清單。 針對本機作業,作業端點會有 FileStreamObject 的端點值。 |
JobBaseServices |
標籤 | 標記字典。 標記可以新增、移除和更新。 | ResourceBaseTags |
JobBaseServices
名字 | 描述 | 價值 |
---|
JobInput
名字 | 描述 | 價值 |
---|---|---|
描述 | 輸入的描述。 | 字串 |
jobInputType | 針對 CustomModelJobInput 類型設定為 『custom_model』,。 將 類型設定為 'literal' LiteralJobInput。 針對 MLFlowModelJobInput 類型 設定為 'mlflow_model',。 針對 mlTableJobInput 類型設定為 'mltable',。 針對 tritonModelJobInput類型 |
'custom_model' 'literal' 'mlflow_model' 'mltable' 'triton_model' 'uri_file' 'uri_folder' (必要) |
JobOutput
名字 | 描述 | 價值 |
---|---|---|
描述 | 輸出的描述。 | 字串 |
jobOutputType | 針對 CustomModelJobOutput 類型設定為 『custom_model』,。 針對 MLFlowModelJobOutput 類型設定為 『mlflow_model』。 針對 mlTableJobOutput 類型設定為 'mltable',。 針對 TritonModelJobOutput 類型 設定為 『triton_model』,。 針對類型 UriFileJobOutput,設定為 'uri_file'。 針對 uriFolderJobOutput 類型設定為 『uri_folder』,。 | 'custom_model' 'mlflow_model' 'mltable' 'triton_model' 'uri_file' 'uri_folder' (必要) |
JobService
名字 | 描述 | 價值 |
---|---|---|
端點 | 端點的 URL。 | 字串 |
jobServiceType | 端點類型。 | 字串 |
港口 | 端點的埠。 | int |
性能 | 在端點上設定的其他屬性。 | JobServiceProperties |
JobServiceProperties
名字 | 描述 | 價值 |
---|
LiteralJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'literal' (必要) |
價值 | [必要]輸入的常值。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
ManagedIdentity
名字 | 描述 | 價值 |
---|---|---|
clientId | 依用戶端識別元指定使用者指派的身分識別。 若為系統指派,請勿設定此欄位。 | 字串 約束: 最小長度 = 36 最大長度 = 36 Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$ |
identityType | [必要]指定身分識別架構的類型。 | 'Managed' (必要) |
objectId | 依物件識別元指定使用者指派的身分識別。 若為系統指派,請勿設定此欄位。 | 字串 約束: 最小長度 = 36 最大長度 = 36 Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$ |
resourceId | 依 ARM 資源識別碼指定使用者指派的身分識別。 若為系統指派,請勿設定此欄位。 | 字串 |
MedianStoppingPolicy
名字 | 描述 | 價值 |
---|---|---|
policyType | [必要]原則設定的名稱 | 'MedianStopping' (必要) |
Microsoft.MachineLearningServices/workspaces/jobs
名字 | 描述 | 價值 |
---|---|---|
名字 | 資源名稱 | 字串 約束: 模式 = ^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$ (必要) |
父母 | 在 Bicep 中,您可以指定子資源的父資源。 只有在父資源外部宣告子資源時,才需要新增這個屬性。 如需詳細資訊,請參閱 父資源外部的子資源。 |
類型的資源符號名稱:工作區 |
性能 | [必要]實體的其他屬性。 | JobBaseProperties (必要) |
MLFlowModelJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'mlflow_model' (必要) |
模式 | 輸入資產傳遞模式。 | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [必要]輸入資產 URI。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
MLFlowModelJobOutput
名字 | 描述 | 價值 |
---|---|---|
jobOutputType | [必要]指定作業的類型。 | 'mlflow_model' (必要) |
模式 | 輸出資產傳遞模式。 | 'ReadWriteMount' 'Upload' |
uri | 輸出資產 URI。 | 字串 |
MLTableJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'mltable' (必要) |
模式 | 輸入資產傳遞模式。 | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [必要]輸入資產 URI。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
MLTableJobOutput
名字 | 描述 | 價值 |
---|---|---|
jobOutputType | [必要]指定作業的類型。 | 'mltable' (必要) |
模式 | 輸出資產傳遞模式。 | 'ReadWriteMount' 'Upload' |
uri | 輸出資產 URI。 | 字串 |
Mpi
名字 | 描述 | 價值 |
---|---|---|
distributionType | [必要]指定散發架構的類型。 | 'Mpi' (必要) |
processCountPerInstance | 每個 MPI 節點的進程數目。 | int |
目的
名字 | 描述 | 價值 |
---|---|---|
目標 | [必要]定義超參數微調支援的計量目標 | 'Maximize' '最小化' (必要) |
primaryMetric | [必要]要優化之計量的名稱。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
PipelineJob
名字 | 描述 | 價值 |
---|---|---|
輸入 | 管線作業的輸入。 | PipelineJobInputs |
工作 | 作業會建構管線作業。 | PipelineJobJobs |
jobType | [必要]指定作業的類型。 | 'Pipeline' (必要) |
輸出 | 管線作業的輸出 | PipelineJobOutputs |
設置 | 管線設定,適用於 ContinueRunOnStepFailure 等專案。 | 任意 |
PipelineJobInputs
名字 | 描述 | 價值 |
---|
PipelineJobJobs
名字 | 描述 | 價值 |
---|
PipelineJobOutputs
名字 | 描述 | 價值 |
---|
PyTorch
名字 | 描述 | 價值 |
---|---|---|
distributionType | [必要]指定散發架構的類型。 | 'PyTorch' (必要) |
processCountPerInstance | 每個節點的進程數目。 | int |
RandomSamplingAlgorithm
名字 | 描述 | 價值 |
---|---|---|
統治 | 隨機演算法的特定類型 | 'Random' 'Sobol' |
samplingAlgorithmType | [必要]用來產生超參數值的演算法,以及組態屬性 | 'Random' (必要) |
種子 | 要作為隨機數產生種子的選擇性整數 | int |
ResourceBaseProperties
名字 | 描述 | 價值 |
---|
ResourceBaseTags
名字 | 描述 | 價值 |
---|
ResourceConfiguration
名字 | 描述 | 價值 |
---|---|---|
instanceCount | 計算目標所使用的實例或節點選擇性數目。 | int |
instanceType | 計算目標所支持的選擇性 VM 類型。 | 字串 |
性能 | 其他屬性包。 | ResourceConfigurationProperties |
ResourceConfigurationProperties
名字 | 描述 | 價值 |
---|
SamplingAlgorithm
名字 | 描述 | 價值 |
---|---|---|
samplingAlgorithmType | 針對貝氏類型設定為 『Bayesian』,BayesianSamplingAlgorithm。 將 類型設定為 'Grid',GridSamplingAlgorithm。 針對 randomSamplingAlgorithm類型 |
“貝氏” 'Grid' 'Random' (必要) |
SweepJob
名字 | 描述 | 價值 |
---|---|---|
earlyTermination | 早期終止原則可在完成之前取消執行效能不佳 | EarlyTerminationPolicy |
輸入 | 對應作業中使用的輸入數據系結。 | SweepJobInputs |
jobType | [必要]指定作業的類型。 | '掃掠' (必要) |
限制 | 掃掠作業限制。 | SweepJobLimits |
目的 | [必要]優化目標。 | 目標(必要) |
輸出 | 對應作業中使用的輸出數據系結。 | SweepJobOutputs |
samplingAlgorithm | [必要]超參數取樣演算法 | SamplingAlgorithm (必要) |
searchSpace | [必要]包含每個參數及其散發的字典。 字典索引鍵是參數的名稱 | 任何 (必要) |
試驗 | [必要]試用版元件定義。 | 試用版元件 (必要) |
SweepJobInputs
名字 | 描述 | 價值 |
---|
SweepJobLimits
名字 | 描述 | 價值 |
---|---|---|
jobLimitsType | [必要]JobLimit 類型。 | 'Command' '掃掠' (必要) |
maxConcurrentTrials | 掃掠作業最大並行試用版。 | int |
maxTotalTrials | 掃掠作業最大總試用版。 | int |
超時 | ISO 8601 格式的最大執行持續時間,之後作業將會取消。 僅支援有效位數為秒數的持續時間。 | 字串 |
trialTimeout | 掃掠作業試用版逾時值。 | 字串 |
SweepJobOutputs
名字 | 描述 | 價值 |
---|
TensorFlow
名字 | 描述 | 價值 |
---|---|---|
distributionType | [必要]指定散發架構的類型。 | 'TensorFlow' (必要) |
parameterServerCount | 參數伺服器工作的數目。 | int |
workerCount | 背景工作角色數目。 如果未指定,則會預設為實例計數。 | int |
TrialComponent
名字 | 描述 | 價值 |
---|---|---|
codeId | 程式代碼資產的 ARM 資源識別碼。 | 字串 |
命令 | [必要]在作業啟動時執行的命令。 例如 “python train.py” | 字串 約束: 最小長度 = 1 模式 = [a-zA-Z0-9_] (必要) |
分配 | 作業的散發組態。 如果設定,這應該是其中一個 Mpi、Tensorflow、PyTorch 或 null。 | DistributionConfiguration |
environmentId | [必要]作業之環境規格的 ARM 資源識別碼。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
environmentVariables | 作業中包含的環境變數。 | TrialComponentEnvironmentVariables |
資源 | 作業的計算資源組態。 | ResourceConfiguration |
TrialComponentEnvironmentVariables
名字 | 描述 | 價值 |
---|
TritonModelJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'triton_model' (必要) |
模式 | 輸入資產傳遞模式。 | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [必要]輸入資產 URI。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
TritonModelJobOutput
名字 | 描述 | 價值 |
---|---|---|
jobOutputType | [必要]指定作業的類型。 | 'triton_model' (必要) |
模式 | 輸出資產傳遞模式。 | 'ReadWriteMount' 'Upload' |
uri | 輸出資產 URI。 | 字串 |
TruncationSelectionPolicy
名字 | 描述 | 價值 |
---|---|---|
policyType | [必要]原則設定的名稱 | 'TruncationSelection' (必要) |
truncationPercentage | 要在每個評估間隔取消的執行百分比。 | int |
UriFileJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'uri_file' (必要) |
模式 | 輸入資產傳遞模式。 | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [必要]輸入資產 URI。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
UriFileJobOutput
名字 | 描述 | 價值 |
---|---|---|
jobOutputType | [必要]指定作業的類型。 | 'uri_file' (必要) |
模式 | 輸出資產傳遞模式。 | 'ReadWriteMount' 'Upload' |
uri | 輸出資產 URI。 | 字串 |
UriFolderJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'uri_folder' (必要) |
模式 | 輸入資產傳遞模式。 | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [必要]輸入資產 URI。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
UriFolderJobOutput
名字 | 描述 | 價值 |
---|---|---|
jobOutputType | [必要]指定作業的類型。 | 'uri_folder' (必要) |
模式 | 輸出資產傳遞模式。 | 'ReadWriteMount' 'Upload' |
uri | 輸出資產 URI。 | 字串 |
UserIdentity
名字 | 描述 | 價值 |
---|---|---|
identityType | [必要]指定身分識別架構的類型。 | 'UserIdentity' (必要) |
快速入門範例
下列快速入門範例會部署此資源類型。
Bicep 檔案 | 描述 |
---|---|
建立 Azure Machine Learning AutoML 分類作業 | 此範本會建立 Azure Machine Learning AutoML 分類作業,以找出最佳模型,以預測客戶是否會訂閱與金融機構的固定期存款。 |
建立 Azure Machine Learning 命令作業 | 此範本會建立具有基本 你好_world 腳本的 Azure Machine Learning 命令作業 |
建立 Azure Machine Learning 掃掠作業 | 此範本會建立 Azure Machine Learning 掃掠作業以進行超參數微調。 |
ARM 樣本資源定義
工作區/作業資源類型可以使用目標作業來部署:
- 資源群組 - 請參閱 資源群組部署命令
如需每個 API 版本中已變更屬性的清單,請參閱 變更記錄檔。
資源格式
若要建立 Microsoft.MachineLearningServices/workspaces/jobs 資源,請將下列 JSON 新增至範本。
{
"type": "Microsoft.MachineLearningServices/workspaces/jobs",
"apiVersion": "2022-05-01",
"name": "string",
"properties": {
"computeId": "string",
"description": "string",
"displayName": "string",
"experimentName": "string",
"identity": {
"identityType": "string"
// For remaining properties, see IdentityConfiguration objects
},
"isArchived": "bool",
"properties": {
"{customized property}": "string"
},
"services": {
"{customized property}": {
"endpoint": "string",
"jobServiceType": "string",
"port": "int",
"properties": {
"{customized property}": "string"
}
}
},
"tags": {
"{customized property}": "string"
},
"jobType": "string"
// For remaining properties, see JobBaseProperties objects
}
}
JobBaseProperties 物件
設定 jobType 屬性,以指定物件的類型。
針對 Command,請使用:
{
"codeId": "string",
"command": "string",
"distribution": {
"distributionType": "string"
// For remaining properties, see DistributionConfiguration objects
},
"environmentId": "string",
"environmentVariables": {
"{customized property}": "string"
},
"inputs": {
"{customized property}": {
"description": "string",
"jobInputType": "string"
// For remaining properties, see JobInput objects
}
},
"jobType": "Command",
"limits": {
"jobLimitsType": "string",
"timeout": "string"
},
"outputs": {
"{customized property}": {
"description": "string",
"jobOutputType": "string"
// For remaining properties, see JobOutput objects
}
},
"resources": {
"instanceCount": "int",
"instanceType": "string",
"properties": {
"{customized property}": {}
}
}
}
針對 Pipeline,請使用:
{
"inputs": {
"{customized property}": {
"description": "string",
"jobInputType": "string"
// For remaining properties, see JobInput objects
}
},
"jobs": {
"{customized property}": {}
},
"jobType": "Pipeline",
"outputs": {
"{customized property}": {
"description": "string",
"jobOutputType": "string"
// For remaining properties, see JobOutput objects
}
},
"settings": {}
}
針對 掃掠,請使用:
{
"earlyTermination": {
"delayEvaluation": "int",
"evaluationInterval": "int",
"policyType": "string"
// For remaining properties, see EarlyTerminationPolicy objects
},
"inputs": {
"{customized property}": {
"description": "string",
"jobInputType": "string"
// For remaining properties, see JobInput objects
}
},
"jobType": "Sweep",
"limits": {
"jobLimitsType": "string",
"maxConcurrentTrials": "int",
"maxTotalTrials": "int",
"timeout": "string",
"trialTimeout": "string"
},
"objective": {
"goal": "string",
"primaryMetric": "string"
},
"outputs": {
"{customized property}": {
"description": "string",
"jobOutputType": "string"
// For remaining properties, see JobOutput objects
}
},
"samplingAlgorithm": {
"samplingAlgorithmType": "string"
// For remaining properties, see SamplingAlgorithm objects
},
"searchSpace": {},
"trial": {
"codeId": "string",
"command": "string",
"distribution": {
"distributionType": "string"
// For remaining properties, see DistributionConfiguration objects
},
"environmentId": "string",
"environmentVariables": {
"{customized property}": "string"
},
"resources": {
"instanceCount": "int",
"instanceType": "string",
"properties": {
"{customized property}": {}
}
}
}
}
IdentityConfiguration 物件
設定 identityType 屬性
針對 AMLToken,請使用:
{
"identityType": "AMLToken"
}
針對 Managed,請使用:
{
"clientId": "string",
"identityType": "Managed",
"objectId": "string",
"resourceId": "string"
}
針對 UserIdentity,請使用:
{
"identityType": "UserIdentity"
}
DistributionConfiguration 物件
設定 distributionType 屬性,以指定對象的類型。
針對 Mpi,請使用:
{
"distributionType": "Mpi",
"processCountPerInstance": "int"
}
針對 PyTorch,請使用:
{
"distributionType": "PyTorch",
"processCountPerInstance": "int"
}
針對 TensorFlow,請使用:
{
"distributionType": "TensorFlow",
"parameterServerCount": "int",
"workerCount": "int"
}
EarlyTerminationPolicy 物件
設定 policyType 屬性,以指定對象的類型。
針對 Bandit,請使用:
{
"policyType": "Bandit",
"slackAmount": "int",
"slackFactor": "int"
}
針對 MedianStopping,請使用:
{
"policyType": "MedianStopping"
}
針對 TruncationSelection,請使用:
{
"policyType": "TruncationSelection",
"truncationPercentage": "int"
}
JobInput 物件
設定 jobInputType 屬性,以指定物件的類型。
針對 custom_model,請使用:
{
"jobInputType": "custom_model",
"mode": "string",
"uri": "string"
}
針對 常值,請使用:
{
"jobInputType": "literal",
"value": "string"
}
針對 mlflow_model,請使用:
{
"jobInputType": "mlflow_model",
"mode": "string",
"uri": "string"
}
針對 mltable,請使用:
{
"jobInputType": "mltable",
"mode": "string",
"uri": "string"
}
針對 triton_model,請使用:
{
"jobInputType": "triton_model",
"mode": "string",
"uri": "string"
}
針對 uri_file,請使用:
{
"jobInputType": "uri_file",
"mode": "string",
"uri": "string"
}
針對 uri_folder,請使用:
{
"jobInputType": "uri_folder",
"mode": "string",
"uri": "string"
}
JobOutput 物件
設定 jobOutputType 屬性,以指定物件的類型。
針對 custom_model,請使用:
{
"jobOutputType": "custom_model",
"mode": "string",
"uri": "string"
}
針對 mlflow_model,請使用:
{
"jobOutputType": "mlflow_model",
"mode": "string",
"uri": "string"
}
針對 mltable,請使用:
{
"jobOutputType": "mltable",
"mode": "string",
"uri": "string"
}
針對 triton_model,請使用:
{
"jobOutputType": "triton_model",
"mode": "string",
"uri": "string"
}
針對 uri_file,請使用:
{
"jobOutputType": "uri_file",
"mode": "string",
"uri": "string"
}
針對 uri_folder,請使用:
{
"jobOutputType": "uri_folder",
"mode": "string",
"uri": "string"
}
SamplingAlgorithm 物件
設定 samplingAlgorithmType 屬性,以指定對象的類型。
針對 貝氏,請使用:
{
"samplingAlgorithmType": "Bayesian"
}
針對 Grid,請使用:
{
"samplingAlgorithmType": "Grid"
}
針對 Random,請使用:
{
"rule": "string",
"samplingAlgorithmType": "Random",
"seed": "int"
}
屬性值
AmlToken
名字 | 描述 | 價值 |
---|---|---|
identityType | [必要]指定身分識別架構的類型。 | 'AMLToken' (必要) |
BanditPolicy
名字 | 描述 | 價值 |
---|---|---|
policyType | [必要]原則設定的名稱 | “強盜”(必要) |
slackAmount | 從最佳執行執行中允許的絕對距離。 | int |
slackFactor | 與最佳執行距離的允許距離比率。 | int |
BayesianSamplingAlgorithm
名字 | 描述 | 價值 |
---|---|---|
samplingAlgorithmType | [必要]用來產生超參數值的演算法,以及組態屬性 | “貝氏” (必要) |
CommandJob
名字 | 描述 | 價值 |
---|---|---|
codeId | 程式代碼資產的 ARM 資源識別碼。 | 字串 |
命令 | [必要]在作業啟動時執行的命令。 例如 “python train.py” | 字串 約束: 最小長度 = 1 模式 = [a-zA-Z0-9_] (必要) |
分配 | 作業的散發組態。 如果設定,這應該是其中一個 Mpi、Tensorflow、PyTorch 或 null。 | DistributionConfiguration |
environmentId | [必要]作業之環境規格的 ARM 資源識別碼。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
environmentVariables | 作業中包含的環境變數。 | CommandJobEnvironmentVariables |
輸入 | 對應作業中使用的輸入數據系結。 | CommandJobInputs |
jobType | [必要]指定作業的類型。 | 'Command' (必要) |
限制 | 命令作業限制。 | CommandJobLimits |
輸出 | 對應作業中使用的輸出數據系結。 | CommandJobOutputs |
資源 | 作業的計算資源組態。 | ResourceConfiguration |
CommandJobEnvironmentVariables
名字 | 描述 | 價值 |
---|
CommandJobInputs
名字 | 描述 | 價值 |
---|
CommandJobLimits
名字 | 描述 | 價值 |
---|---|---|
jobLimitsType | [必要]JobLimit 類型。 | 'Command' '掃掠' (必要) |
超時 | ISO 8601 格式的最大執行持續時間,之後作業將會取消。 僅支援有效位數為秒數的持續時間。 | 字串 |
CommandJobOutputs
名字 | 描述 | 價值 |
---|
CustomModelJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'custom_model' (必要) |
模式 | 輸入資產傳遞模式。 | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [必要]輸入資產 URI。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
CustomModelJobOutput
名字 | 描述 | 價值 |
---|---|---|
jobOutputType | [必要]指定作業的類型。 | 'custom_model' (必要) |
模式 | 輸出資產傳遞模式。 | 'ReadWriteMount' 'Upload' |
uri | 輸出資產 URI。 | 字串 |
DistributionConfiguration
名字 | 描述 | 價值 |
---|---|---|
distributionType | 將 類型設定為 'Mpi',Mpi。 將 類型設定為 'PyTorch',PyTorch。 針對 tensorFlow 類型 設定為 'TensorFlow',。 | 'Mpi' 'PyTorch' 'TensorFlow' (必要) |
EarlyTerminationPolicy
名字 | 描述 | 價值 |
---|---|---|
delayEvaluation | 延遲第一次評估的間隔數目。 | int |
evaluationInterval | 原則評估之間的間隔(執行次數)。 | int |
policyType | 針對 BanditPolicy 類型設定為 'BanditPolicy',。 針對 type MedianStoppingPolicy設定為 'MedianStopping'。 針對類型 TruncationSelectionPolicy,設定為 『TruncationSelection』。 | “強盜” 'MedianStopping' 'TruncationSelection' (必要) |
GridSamplingAlgorithm
名字 | 描述 | 價值 |
---|---|---|
samplingAlgorithmType | [必要]用來產生超參數值的演算法,以及組態屬性 | 'Grid' (必要) |
IdentityConfiguration
名字 | 描述 | 價值 |
---|---|---|
identityType | 針對 AmlToken 類型 設定為 'AMLToken',。 針對 managedIdentity 類型 設定為 'Managed',。 將 類型設定為 'UserIdentity' UserIdentity。 | 'AMLToken' 'Managed' 'UserIdentity' (必要) |
JobBaseProperties
名字 | 描述 | 價值 |
---|---|---|
computeId | 計算資源的 ARM 資源識別碼。 | 字串 |
描述 | 資產描述文字。 | 字串 |
displayName | 工作的顯示名稱。 | 字串 |
experimentName | 作業所屬的實驗名稱。 如果未設定,作業會放在 「默認」實驗中。 | 字串 |
身份 | 身分識別設定。 如果設定,這應該是其中一個 AmlToken、ManagedIdentity、UserIdentity 或 null。 如果為 null,則預設為 AmlToken。 |
IdentityConfiguration |
isArchived | 資產是否已封存? | bool |
jobType | 設定為'Command' 類型 CommandJob。 將 類型設定為 'Pipeline',PipelineJob。 設定為 [掃掠] 類型為 SweepJob。 | 'Command' 'Pipeline' '掃掠' (必要) |
性能 | 資產屬性字典。 | ResourceBaseProperties |
服務業 | JobEndpoints 的清單。 針對本機作業,作業端點會有 FileStreamObject 的端點值。 |
JobBaseServices |
標籤 | 標記字典。 標記可以新增、移除和更新。 | ResourceBaseTags |
JobBaseServices
名字 | 描述 | 價值 |
---|
JobInput
名字 | 描述 | 價值 |
---|---|---|
描述 | 輸入的描述。 | 字串 |
jobInputType | 針對 CustomModelJobInput 類型設定為 『custom_model』,。 將 類型設定為 'literal' LiteralJobInput。 針對 MLFlowModelJobInput 類型 設定為 'mlflow_model',。 針對 mlTableJobInput 類型設定為 'mltable',。 針對 tritonModelJobInput類型 |
'custom_model' 'literal' 'mlflow_model' 'mltable' 'triton_model' 'uri_file' 'uri_folder' (必要) |
JobOutput
名字 | 描述 | 價值 |
---|---|---|
描述 | 輸出的描述。 | 字串 |
jobOutputType | 針對 CustomModelJobOutput 類型設定為 『custom_model』,。 針對 MLFlowModelJobOutput 類型設定為 『mlflow_model』。 針對 mlTableJobOutput 類型設定為 'mltable',。 針對 TritonModelJobOutput 類型 設定為 『triton_model』,。 針對類型 UriFileJobOutput,設定為 'uri_file'。 針對 uriFolderJobOutput 類型設定為 『uri_folder』,。 | 'custom_model' 'mlflow_model' 'mltable' 'triton_model' 'uri_file' 'uri_folder' (必要) |
JobService
名字 | 描述 | 價值 |
---|---|---|
端點 | 端點的 URL。 | 字串 |
jobServiceType | 端點類型。 | 字串 |
港口 | 端點的埠。 | int |
性能 | 在端點上設定的其他屬性。 | JobServiceProperties |
JobServiceProperties
名字 | 描述 | 價值 |
---|
LiteralJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'literal' (必要) |
價值 | [必要]輸入的常值。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
ManagedIdentity
名字 | 描述 | 價值 |
---|---|---|
clientId | 依用戶端識別元指定使用者指派的身分識別。 若為系統指派,請勿設定此欄位。 | 字串 約束: 最小長度 = 36 最大長度 = 36 Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$ |
identityType | [必要]指定身分識別架構的類型。 | 'Managed' (必要) |
objectId | 依物件識別元指定使用者指派的身分識別。 若為系統指派,請勿設定此欄位。 | 字串 約束: 最小長度 = 36 最大長度 = 36 Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$ |
resourceId | 依 ARM 資源識別碼指定使用者指派的身分識別。 若為系統指派,請勿設定此欄位。 | 字串 |
MedianStoppingPolicy
名字 | 描述 | 價值 |
---|---|---|
policyType | [必要]原則設定的名稱 | 'MedianStopping' (必要) |
Microsoft.MachineLearningServices/workspaces/jobs
名字 | 描述 | 價值 |
---|---|---|
apiVersion | API 版本 | '2022-05-01' |
名字 | 資源名稱 | 字串 約束: 模式 = ^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$ (必要) |
性能 | [必要]實體的其他屬性。 | JobBaseProperties (必要) |
類型 | 資源類型 | 'Microsoft.MachineLearningServices/workspaces/jobs' |
MLFlowModelJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'mlflow_model' (必要) |
模式 | 輸入資產傳遞模式。 | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [必要]輸入資產 URI。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
MLFlowModelJobOutput
名字 | 描述 | 價值 |
---|---|---|
jobOutputType | [必要]指定作業的類型。 | 'mlflow_model' (必要) |
模式 | 輸出資產傳遞模式。 | 'ReadWriteMount' 'Upload' |
uri | 輸出資產 URI。 | 字串 |
MLTableJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'mltable' (必要) |
模式 | 輸入資產傳遞模式。 | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [必要]輸入資產 URI。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
MLTableJobOutput
名字 | 描述 | 價值 |
---|---|---|
jobOutputType | [必要]指定作業的類型。 | 'mltable' (必要) |
模式 | 輸出資產傳遞模式。 | 'ReadWriteMount' 'Upload' |
uri | 輸出資產 URI。 | 字串 |
Mpi
名字 | 描述 | 價值 |
---|---|---|
distributionType | [必要]指定散發架構的類型。 | 'Mpi' (必要) |
processCountPerInstance | 每個 MPI 節點的進程數目。 | int |
目的
名字 | 描述 | 價值 |
---|---|---|
目標 | [必要]定義超參數微調支援的計量目標 | 'Maximize' '最小化' (必要) |
primaryMetric | [必要]要優化之計量的名稱。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
PipelineJob
名字 | 描述 | 價值 |
---|---|---|
輸入 | 管線作業的輸入。 | PipelineJobInputs |
工作 | 作業會建構管線作業。 | PipelineJobJobs |
jobType | [必要]指定作業的類型。 | 'Pipeline' (必要) |
輸出 | 管線作業的輸出 | PipelineJobOutputs |
設置 | 管線設定,適用於 ContinueRunOnStepFailure 等專案。 | 任意 |
PipelineJobInputs
名字 | 描述 | 價值 |
---|
PipelineJobJobs
名字 | 描述 | 價值 |
---|
PipelineJobOutputs
名字 | 描述 | 價值 |
---|
PyTorch
名字 | 描述 | 價值 |
---|---|---|
distributionType | [必要]指定散發架構的類型。 | 'PyTorch' (必要) |
processCountPerInstance | 每個節點的進程數目。 | int |
RandomSamplingAlgorithm
名字 | 描述 | 價值 |
---|---|---|
統治 | 隨機演算法的特定類型 | 'Random' 'Sobol' |
samplingAlgorithmType | [必要]用來產生超參數值的演算法,以及組態屬性 | 'Random' (必要) |
種子 | 要作為隨機數產生種子的選擇性整數 | int |
ResourceBaseProperties
名字 | 描述 | 價值 |
---|
ResourceBaseTags
名字 | 描述 | 價值 |
---|
ResourceConfiguration
名字 | 描述 | 價值 |
---|---|---|
instanceCount | 計算目標所使用的實例或節點選擇性數目。 | int |
instanceType | 計算目標所支持的選擇性 VM 類型。 | 字串 |
性能 | 其他屬性包。 | ResourceConfigurationProperties |
ResourceConfigurationProperties
名字 | 描述 | 價值 |
---|
SamplingAlgorithm
名字 | 描述 | 價值 |
---|---|---|
samplingAlgorithmType | 針對貝氏類型設定為 『Bayesian』,BayesianSamplingAlgorithm。 將 類型設定為 'Grid',GridSamplingAlgorithm。 針對 randomSamplingAlgorithm類型 |
“貝氏” 'Grid' 'Random' (必要) |
SweepJob
名字 | 描述 | 價值 |
---|---|---|
earlyTermination | 早期終止原則可在完成之前取消執行效能不佳 | EarlyTerminationPolicy |
輸入 | 對應作業中使用的輸入數據系結。 | SweepJobInputs |
jobType | [必要]指定作業的類型。 | '掃掠' (必要) |
限制 | 掃掠作業限制。 | SweepJobLimits |
目的 | [必要]優化目標。 | 目標(必要) |
輸出 | 對應作業中使用的輸出數據系結。 | SweepJobOutputs |
samplingAlgorithm | [必要]超參數取樣演算法 | SamplingAlgorithm (必要) |
searchSpace | [必要]包含每個參數及其散發的字典。 字典索引鍵是參數的名稱 | 任何 (必要) |
試驗 | [必要]試用版元件定義。 | 試用版元件 (必要) |
SweepJobInputs
名字 | 描述 | 價值 |
---|
SweepJobLimits
名字 | 描述 | 價值 |
---|---|---|
jobLimitsType | [必要]JobLimit 類型。 | 'Command' '掃掠' (必要) |
maxConcurrentTrials | 掃掠作業最大並行試用版。 | int |
maxTotalTrials | 掃掠作業最大總試用版。 | int |
超時 | ISO 8601 格式的最大執行持續時間,之後作業將會取消。 僅支援有效位數為秒數的持續時間。 | 字串 |
trialTimeout | 掃掠作業試用版逾時值。 | 字串 |
SweepJobOutputs
名字 | 描述 | 價值 |
---|
TensorFlow
名字 | 描述 | 價值 |
---|---|---|
distributionType | [必要]指定散發架構的類型。 | 'TensorFlow' (必要) |
parameterServerCount | 參數伺服器工作的數目。 | int |
workerCount | 背景工作角色數目。 如果未指定,則會預設為實例計數。 | int |
TrialComponent
名字 | 描述 | 價值 |
---|---|---|
codeId | 程式代碼資產的 ARM 資源識別碼。 | 字串 |
命令 | [必要]在作業啟動時執行的命令。 例如 “python train.py” | 字串 約束: 最小長度 = 1 模式 = [a-zA-Z0-9_] (必要) |
分配 | 作業的散發組態。 如果設定,這應該是其中一個 Mpi、Tensorflow、PyTorch 或 null。 | DistributionConfiguration |
environmentId | [必要]作業之環境規格的 ARM 資源識別碼。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
environmentVariables | 作業中包含的環境變數。 | TrialComponentEnvironmentVariables |
資源 | 作業的計算資源組態。 | ResourceConfiguration |
TrialComponentEnvironmentVariables
名字 | 描述 | 價值 |
---|
TritonModelJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'triton_model' (必要) |
模式 | 輸入資產傳遞模式。 | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [必要]輸入資產 URI。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
TritonModelJobOutput
名字 | 描述 | 價值 |
---|---|---|
jobOutputType | [必要]指定作業的類型。 | 'triton_model' (必要) |
模式 | 輸出資產傳遞模式。 | 'ReadWriteMount' 'Upload' |
uri | 輸出資產 URI。 | 字串 |
TruncationSelectionPolicy
名字 | 描述 | 價值 |
---|---|---|
policyType | [必要]原則設定的名稱 | 'TruncationSelection' (必要) |
truncationPercentage | 要在每個評估間隔取消的執行百分比。 | int |
UriFileJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'uri_file' (必要) |
模式 | 輸入資產傳遞模式。 | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [必要]輸入資產 URI。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
UriFileJobOutput
名字 | 描述 | 價值 |
---|---|---|
jobOutputType | [必要]指定作業的類型。 | 'uri_file' (必要) |
模式 | 輸出資產傳遞模式。 | 'ReadWriteMount' 'Upload' |
uri | 輸出資產 URI。 | 字串 |
UriFolderJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'uri_folder' (必要) |
模式 | 輸入資產傳遞模式。 | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [必要]輸入資產 URI。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
UriFolderJobOutput
名字 | 描述 | 價值 |
---|---|---|
jobOutputType | [必要]指定作業的類型。 | 'uri_folder' (必要) |
模式 | 輸出資產傳遞模式。 | 'ReadWriteMount' 'Upload' |
uri | 輸出資產 URI。 | 字串 |
UserIdentity
名字 | 描述 | 價值 |
---|---|---|
identityType | [必要]指定身分識別架構的類型。 | 'UserIdentity' (必要) |
快速入門範本
下列快速入門範本會部署此資源類型。
範本 | 描述 |
---|---|
建立 Azure Machine Learning AutoML 分類作業 |
此範本會建立 Azure Machine Learning AutoML 分類作業,以找出最佳模型,以預測客戶是否會訂閱與金融機構的固定期存款。 |
建立 Azure Machine Learning 命令作業 |
此範本會建立具有基本 你好_world 腳本的 Azure Machine Learning 命令作業 |
建立 Azure Machine Learning 掃掠作業 |
此範本會建立 Azure Machine Learning 掃掠作業以進行超參數微調。 |
Terraform (AzAPI 提供者) 資源定義
工作區/作業資源類型可以使用目標作業來部署:
- 資源群組
如需每個 API 版本中已變更屬性的清單,請參閱 變更記錄檔。
資源格式
若要建立 Microsoft.MachineLearningServices/workspaces/jobs 資源,請將下列 Terraform 新增至範本。
resource "azapi_resource" "symbolicname" {
type = "Microsoft.MachineLearningServices/workspaces/jobs@2022-05-01"
name = "string"
body = jsonencode({
properties = {
computeId = "string"
description = "string"
displayName = "string"
experimentName = "string"
identity = {
identityType = "string"
// For remaining properties, see IdentityConfiguration objects
}
isArchived = bool
properties = {
{customized property} = "string"
}
services = {
{customized property} = {
endpoint = "string"
jobServiceType = "string"
port = int
properties = {
{customized property} = "string"
}
}
}
tags = {
{customized property} = "string"
}
jobType = "string"
// For remaining properties, see JobBaseProperties objects
}
})
}
JobBaseProperties 物件
設定 jobType 屬性,以指定物件的類型。
針對 Command,請使用:
{
codeId = "string"
command = "string"
distribution = {
distributionType = "string"
// For remaining properties, see DistributionConfiguration objects
}
environmentId = "string"
environmentVariables = {
{customized property} = "string"
}
inputs = {
{customized property} = {
description = "string"
jobInputType = "string"
// For remaining properties, see JobInput objects
}
}
jobType = "Command"
limits = {
jobLimitsType = "string"
timeout = "string"
}
outputs = {
{customized property} = {
description = "string"
jobOutputType = "string"
// For remaining properties, see JobOutput objects
}
}
resources = {
instanceCount = int
instanceType = "string"
properties = {
{customized property} = ?
}
}
}
針對 Pipeline,請使用:
{
inputs = {
{customized property} = {
description = "string"
jobInputType = "string"
// For remaining properties, see JobInput objects
}
}
jobs = {
{customized property} = ?
}
jobType = "Pipeline"
outputs = {
{customized property} = {
description = "string"
jobOutputType = "string"
// For remaining properties, see JobOutput objects
}
}
settings = ?
}
針對 掃掠,請使用:
{
earlyTermination = {
delayEvaluation = int
evaluationInterval = int
policyType = "string"
// For remaining properties, see EarlyTerminationPolicy objects
}
inputs = {
{customized property} = {
description = "string"
jobInputType = "string"
// For remaining properties, see JobInput objects
}
}
jobType = "Sweep"
limits = {
jobLimitsType = "string"
maxConcurrentTrials = int
maxTotalTrials = int
timeout = "string"
trialTimeout = "string"
}
objective = {
goal = "string"
primaryMetric = "string"
}
outputs = {
{customized property} = {
description = "string"
jobOutputType = "string"
// For remaining properties, see JobOutput objects
}
}
samplingAlgorithm = {
samplingAlgorithmType = "string"
// For remaining properties, see SamplingAlgorithm objects
}
searchSpace = ?
trial = {
codeId = "string"
command = "string"
distribution = {
distributionType = "string"
// For remaining properties, see DistributionConfiguration objects
}
environmentId = "string"
environmentVariables = {
{customized property} = "string"
}
resources = {
instanceCount = int
instanceType = "string"
properties = {
{customized property} = ?
}
}
}
}
IdentityConfiguration 物件
設定 identityType 屬性
針對 AMLToken,請使用:
{
identityType = "AMLToken"
}
針對 Managed,請使用:
{
clientId = "string"
identityType = "Managed"
objectId = "string"
resourceId = "string"
}
針對 UserIdentity,請使用:
{
identityType = "UserIdentity"
}
DistributionConfiguration 物件
設定 distributionType 屬性,以指定對象的類型。
針對 Mpi,請使用:
{
distributionType = "Mpi"
processCountPerInstance = int
}
針對 PyTorch,請使用:
{
distributionType = "PyTorch"
processCountPerInstance = int
}
針對 TensorFlow,請使用:
{
distributionType = "TensorFlow"
parameterServerCount = int
workerCount = int
}
EarlyTerminationPolicy 物件
設定 policyType 屬性,以指定對象的類型。
針對 Bandit,請使用:
{
policyType = "Bandit"
slackAmount = int
slackFactor = int
}
針對 MedianStopping,請使用:
{
policyType = "MedianStopping"
}
針對 TruncationSelection,請使用:
{
policyType = "TruncationSelection"
truncationPercentage = int
}
JobInput 物件
設定 jobInputType 屬性,以指定物件的類型。
針對 custom_model,請使用:
{
jobInputType = "custom_model"
mode = "string"
uri = "string"
}
針對 常值,請使用:
{
jobInputType = "literal"
value = "string"
}
針對 mlflow_model,請使用:
{
jobInputType = "mlflow_model"
mode = "string"
uri = "string"
}
針對 mltable,請使用:
{
jobInputType = "mltable"
mode = "string"
uri = "string"
}
針對 triton_model,請使用:
{
jobInputType = "triton_model"
mode = "string"
uri = "string"
}
針對 uri_file,請使用:
{
jobInputType = "uri_file"
mode = "string"
uri = "string"
}
針對 uri_folder,請使用:
{
jobInputType = "uri_folder"
mode = "string"
uri = "string"
}
JobOutput 物件
設定 jobOutputType 屬性,以指定物件的類型。
針對 custom_model,請使用:
{
jobOutputType = "custom_model"
mode = "string"
uri = "string"
}
針對 mlflow_model,請使用:
{
jobOutputType = "mlflow_model"
mode = "string"
uri = "string"
}
針對 mltable,請使用:
{
jobOutputType = "mltable"
mode = "string"
uri = "string"
}
針對 triton_model,請使用:
{
jobOutputType = "triton_model"
mode = "string"
uri = "string"
}
針對 uri_file,請使用:
{
jobOutputType = "uri_file"
mode = "string"
uri = "string"
}
針對 uri_folder,請使用:
{
jobOutputType = "uri_folder"
mode = "string"
uri = "string"
}
SamplingAlgorithm 物件
設定 samplingAlgorithmType 屬性,以指定對象的類型。
針對 貝氏,請使用:
{
samplingAlgorithmType = "Bayesian"
}
針對 Grid,請使用:
{
samplingAlgorithmType = "Grid"
}
針對 Random,請使用:
{
rule = "string"
samplingAlgorithmType = "Random"
seed = int
}
屬性值
AmlToken
名字 | 描述 | 價值 |
---|---|---|
identityType | [必要]指定身分識別架構的類型。 | 'AMLToken' (必要) |
BanditPolicy
名字 | 描述 | 價值 |
---|---|---|
policyType | [必要]原則設定的名稱 | “強盜”(必要) |
slackAmount | 從最佳執行執行中允許的絕對距離。 | int |
slackFactor | 與最佳執行距離的允許距離比率。 | int |
BayesianSamplingAlgorithm
名字 | 描述 | 價值 |
---|---|---|
samplingAlgorithmType | [必要]用來產生超參數值的演算法,以及組態屬性 | “貝氏” (必要) |
CommandJob
名字 | 描述 | 價值 |
---|---|---|
codeId | 程式代碼資產的 ARM 資源識別碼。 | 字串 |
命令 | [必要]在作業啟動時執行的命令。 例如 “python train.py” | 字串 約束: 最小長度 = 1 模式 = [a-zA-Z0-9_] (必要) |
分配 | 作業的散發組態。 如果設定,這應該是其中一個 Mpi、Tensorflow、PyTorch 或 null。 | DistributionConfiguration |
environmentId | [必要]作業之環境規格的 ARM 資源識別碼。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
environmentVariables | 作業中包含的環境變數。 | CommandJobEnvironmentVariables |
輸入 | 對應作業中使用的輸入數據系結。 | CommandJobInputs |
jobType | [必要]指定作業的類型。 | 'Command' (必要) |
限制 | 命令作業限制。 | CommandJobLimits |
輸出 | 對應作業中使用的輸出數據系結。 | CommandJobOutputs |
資源 | 作業的計算資源組態。 | ResourceConfiguration |
CommandJobEnvironmentVariables
名字 | 描述 | 價值 |
---|
CommandJobInputs
名字 | 描述 | 價值 |
---|
CommandJobLimits
名字 | 描述 | 價值 |
---|---|---|
jobLimitsType | [必要]JobLimit 類型。 | 'Command' '掃掠' (必要) |
超時 | ISO 8601 格式的最大執行持續時間,之後作業將會取消。 僅支援有效位數為秒數的持續時間。 | 字串 |
CommandJobOutputs
名字 | 描述 | 價值 |
---|
CustomModelJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'custom_model' (必要) |
模式 | 輸入資產傳遞模式。 | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [必要]輸入資產 URI。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
CustomModelJobOutput
名字 | 描述 | 價值 |
---|---|---|
jobOutputType | [必要]指定作業的類型。 | 'custom_model' (必要) |
模式 | 輸出資產傳遞模式。 | 'ReadWriteMount' 'Upload' |
uri | 輸出資產 URI。 | 字串 |
DistributionConfiguration
名字 | 描述 | 價值 |
---|---|---|
distributionType | 將 類型設定為 'Mpi',Mpi。 將 類型設定為 'PyTorch',PyTorch。 針對 tensorFlow 類型 設定為 'TensorFlow',。 | 'Mpi' 'PyTorch' 'TensorFlow' (必要) |
EarlyTerminationPolicy
名字 | 描述 | 價值 |
---|---|---|
delayEvaluation | 延遲第一次評估的間隔數目。 | int |
evaluationInterval | 原則評估之間的間隔(執行次數)。 | int |
policyType | 針對 BanditPolicy 類型設定為 'BanditPolicy',。 針對 type MedianStoppingPolicy設定為 'MedianStopping'。 針對類型 TruncationSelectionPolicy,設定為 『TruncationSelection』。 | “強盜” 'MedianStopping' 'TruncationSelection' (必要) |
GridSamplingAlgorithm
名字 | 描述 | 價值 |
---|---|---|
samplingAlgorithmType | [必要]用來產生超參數值的演算法,以及組態屬性 | 'Grid' (必要) |
IdentityConfiguration
名字 | 描述 | 價值 |
---|---|---|
identityType | 針對 AmlToken 類型 設定為 'AMLToken',。 針對 managedIdentity 類型 設定為 'Managed',。 將 類型設定為 'UserIdentity' UserIdentity。 | 'AMLToken' 'Managed' 'UserIdentity' (必要) |
JobBaseProperties
名字 | 描述 | 價值 |
---|---|---|
computeId | 計算資源的 ARM 資源識別碼。 | 字串 |
描述 | 資產描述文字。 | 字串 |
displayName | 工作的顯示名稱。 | 字串 |
experimentName | 作業所屬的實驗名稱。 如果未設定,作業會放在 「默認」實驗中。 | 字串 |
身份 | 身分識別設定。 如果設定,這應該是其中一個 AmlToken、ManagedIdentity、UserIdentity 或 null。 如果為 null,則預設為 AmlToken。 |
IdentityConfiguration |
isArchived | 資產是否已封存? | bool |
jobType | 設定為'Command' 類型 CommandJob。 將 類型設定為 'Pipeline',PipelineJob。 設定為 [掃掠] 類型為 SweepJob。 | 'Command' 'Pipeline' '掃掠' (必要) |
性能 | 資產屬性字典。 | ResourceBaseProperties |
服務業 | JobEndpoints 的清單。 針對本機作業,作業端點會有 FileStreamObject 的端點值。 |
JobBaseServices |
標籤 | 標記字典。 標記可以新增、移除和更新。 | ResourceBaseTags |
JobBaseServices
名字 | 描述 | 價值 |
---|
JobInput
名字 | 描述 | 價值 |
---|---|---|
描述 | 輸入的描述。 | 字串 |
jobInputType | 針對 CustomModelJobInput 類型設定為 『custom_model』,。 將 類型設定為 'literal' LiteralJobInput。 針對 MLFlowModelJobInput 類型 設定為 'mlflow_model',。 針對 mlTableJobInput 類型設定為 'mltable',。 針對 tritonModelJobInput類型 |
'custom_model' 'literal' 'mlflow_model' 'mltable' 'triton_model' 'uri_file' 'uri_folder' (必要) |
JobOutput
名字 | 描述 | 價值 |
---|---|---|
描述 | 輸出的描述。 | 字串 |
jobOutputType | 針對 CustomModelJobOutput 類型設定為 『custom_model』,。 針對 MLFlowModelJobOutput 類型設定為 『mlflow_model』。 針對 mlTableJobOutput 類型設定為 'mltable',。 針對 TritonModelJobOutput 類型 設定為 『triton_model』,。 針對類型 UriFileJobOutput,設定為 'uri_file'。 針對 uriFolderJobOutput 類型設定為 『uri_folder』,。 | 'custom_model' 'mlflow_model' 'mltable' 'triton_model' 'uri_file' 'uri_folder' (必要) |
JobService
名字 | 描述 | 價值 |
---|---|---|
端點 | 端點的 URL。 | 字串 |
jobServiceType | 端點類型。 | 字串 |
港口 | 端點的埠。 | int |
性能 | 在端點上設定的其他屬性。 | JobServiceProperties |
JobServiceProperties
名字 | 描述 | 價值 |
---|
LiteralJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'literal' (必要) |
價值 | [必要]輸入的常值。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
ManagedIdentity
名字 | 描述 | 價值 |
---|---|---|
clientId | 依用戶端識別元指定使用者指派的身分識別。 若為系統指派,請勿設定此欄位。 | 字串 約束: 最小長度 = 36 最大長度 = 36 Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$ |
identityType | [必要]指定身分識別架構的類型。 | 'Managed' (必要) |
objectId | 依物件識別元指定使用者指派的身分識別。 若為系統指派,請勿設定此欄位。 | 字串 約束: 最小長度 = 36 最大長度 = 36 Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$ |
resourceId | 依 ARM 資源識別碼指定使用者指派的身分識別。 若為系統指派,請勿設定此欄位。 | 字串 |
MedianStoppingPolicy
名字 | 描述 | 價值 |
---|---|---|
policyType | [必要]原則設定的名稱 | 'MedianStopping' (必要) |
Microsoft.MachineLearningServices/workspaces/jobs
名字 | 描述 | 價值 |
---|---|---|
名字 | 資源名稱 | 字串 約束: 模式 = ^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$ (必要) |
parent_id | 此資源為父系之資源的標識碼。 | 類型資源的標識碼:工作區 |
性能 | [必要]實體的其他屬性。 | JobBaseProperties (必要) |
類型 | 資源類型 | “Microsoft.MachineLearningServices/workspaces/jobs@2022-05-01” |
MLFlowModelJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'mlflow_model' (必要) |
模式 | 輸入資產傳遞模式。 | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [必要]輸入資產 URI。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
MLFlowModelJobOutput
名字 | 描述 | 價值 |
---|---|---|
jobOutputType | [必要]指定作業的類型。 | 'mlflow_model' (必要) |
模式 | 輸出資產傳遞模式。 | 'ReadWriteMount' 'Upload' |
uri | 輸出資產 URI。 | 字串 |
MLTableJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'mltable' (必要) |
模式 | 輸入資產傳遞模式。 | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [必要]輸入資產 URI。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
MLTableJobOutput
名字 | 描述 | 價值 |
---|---|---|
jobOutputType | [必要]指定作業的類型。 | 'mltable' (必要) |
模式 | 輸出資產傳遞模式。 | 'ReadWriteMount' 'Upload' |
uri | 輸出資產 URI。 | 字串 |
Mpi
名字 | 描述 | 價值 |
---|---|---|
distributionType | [必要]指定散發架構的類型。 | 'Mpi' (必要) |
processCountPerInstance | 每個 MPI 節點的進程數目。 | int |
目的
名字 | 描述 | 價值 |
---|---|---|
目標 | [必要]定義超參數微調支援的計量目標 | 'Maximize' '最小化' (必要) |
primaryMetric | [必要]要優化之計量的名稱。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
PipelineJob
名字 | 描述 | 價值 |
---|---|---|
輸入 | 管線作業的輸入。 | PipelineJobInputs |
工作 | 作業會建構管線作業。 | PipelineJobJobs |
jobType | [必要]指定作業的類型。 | 'Pipeline' (必要) |
輸出 | 管線作業的輸出 | PipelineJobOutputs |
設置 | 管線設定,適用於 ContinueRunOnStepFailure 等專案。 | 任意 |
PipelineJobInputs
名字 | 描述 | 價值 |
---|
PipelineJobJobs
名字 | 描述 | 價值 |
---|
PipelineJobOutputs
名字 | 描述 | 價值 |
---|
PyTorch
名字 | 描述 | 價值 |
---|---|---|
distributionType | [必要]指定散發架構的類型。 | 'PyTorch' (必要) |
processCountPerInstance | 每個節點的進程數目。 | int |
RandomSamplingAlgorithm
名字 | 描述 | 價值 |
---|---|---|
統治 | 隨機演算法的特定類型 | 'Random' 'Sobol' |
samplingAlgorithmType | [必要]用來產生超參數值的演算法,以及組態屬性 | 'Random' (必要) |
種子 | 要作為隨機數產生種子的選擇性整數 | int |
ResourceBaseProperties
名字 | 描述 | 價值 |
---|
ResourceBaseTags
名字 | 描述 | 價值 |
---|
ResourceConfiguration
名字 | 描述 | 價值 |
---|---|---|
instanceCount | 計算目標所使用的實例或節點選擇性數目。 | int |
instanceType | 計算目標所支持的選擇性 VM 類型。 | 字串 |
性能 | 其他屬性包。 | ResourceConfigurationProperties |
ResourceConfigurationProperties
名字 | 描述 | 價值 |
---|
SamplingAlgorithm
名字 | 描述 | 價值 |
---|---|---|
samplingAlgorithmType | 針對貝氏類型設定為 『Bayesian』,BayesianSamplingAlgorithm。 將 類型設定為 'Grid',GridSamplingAlgorithm。 針對 randomSamplingAlgorithm類型 |
“貝氏” 'Grid' 'Random' (必要) |
SweepJob
名字 | 描述 | 價值 |
---|---|---|
earlyTermination | 早期終止原則可在完成之前取消執行效能不佳 | EarlyTerminationPolicy |
輸入 | 對應作業中使用的輸入數據系結。 | SweepJobInputs |
jobType | [必要]指定作業的類型。 | '掃掠' (必要) |
限制 | 掃掠作業限制。 | SweepJobLimits |
目的 | [必要]優化目標。 | 目標(必要) |
輸出 | 對應作業中使用的輸出數據系結。 | SweepJobOutputs |
samplingAlgorithm | [必要]超參數取樣演算法 | SamplingAlgorithm (必要) |
searchSpace | [必要]包含每個參數及其散發的字典。 字典索引鍵是參數的名稱 | 任何 (必要) |
試驗 | [必要]試用版元件定義。 | 試用版元件 (必要) |
SweepJobInputs
名字 | 描述 | 價值 |
---|
SweepJobLimits
名字 | 描述 | 價值 |
---|---|---|
jobLimitsType | [必要]JobLimit 類型。 | 'Command' '掃掠' (必要) |
maxConcurrentTrials | 掃掠作業最大並行試用版。 | int |
maxTotalTrials | 掃掠作業最大總試用版。 | int |
超時 | ISO 8601 格式的最大執行持續時間,之後作業將會取消。 僅支援有效位數為秒數的持續時間。 | 字串 |
trialTimeout | 掃掠作業試用版逾時值。 | 字串 |
SweepJobOutputs
名字 | 描述 | 價值 |
---|
TensorFlow
名字 | 描述 | 價值 |
---|---|---|
distributionType | [必要]指定散發架構的類型。 | 'TensorFlow' (必要) |
parameterServerCount | 參數伺服器工作的數目。 | int |
workerCount | 背景工作角色數目。 如果未指定,則會預設為實例計數。 | int |
TrialComponent
名字 | 描述 | 價值 |
---|---|---|
codeId | 程式代碼資產的 ARM 資源識別碼。 | 字串 |
命令 | [必要]在作業啟動時執行的命令。 例如 “python train.py” | 字串 約束: 最小長度 = 1 模式 = [a-zA-Z0-9_] (必要) |
分配 | 作業的散發組態。 如果設定,這應該是其中一個 Mpi、Tensorflow、PyTorch 或 null。 | DistributionConfiguration |
environmentId | [必要]作業之環境規格的 ARM 資源識別碼。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
environmentVariables | 作業中包含的環境變數。 | TrialComponentEnvironmentVariables |
資源 | 作業的計算資源組態。 | ResourceConfiguration |
TrialComponentEnvironmentVariables
名字 | 描述 | 價值 |
---|
TritonModelJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'triton_model' (必要) |
模式 | 輸入資產傳遞模式。 | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [必要]輸入資產 URI。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
TritonModelJobOutput
名字 | 描述 | 價值 |
---|---|---|
jobOutputType | [必要]指定作業的類型。 | 'triton_model' (必要) |
模式 | 輸出資產傳遞模式。 | 'ReadWriteMount' 'Upload' |
uri | 輸出資產 URI。 | 字串 |
TruncationSelectionPolicy
名字 | 描述 | 價值 |
---|---|---|
policyType | [必要]原則設定的名稱 | 'TruncationSelection' (必要) |
truncationPercentage | 要在每個評估間隔取消的執行百分比。 | int |
UriFileJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'uri_file' (必要) |
模式 | 輸入資產傳遞模式。 | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [必要]輸入資產 URI。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
UriFileJobOutput
名字 | 描述 | 價值 |
---|---|---|
jobOutputType | [必要]指定作業的類型。 | 'uri_file' (必要) |
模式 | 輸出資產傳遞模式。 | 'ReadWriteMount' 'Upload' |
uri | 輸出資產 URI。 | 字串 |
UriFolderJobInput
名字 | 描述 | 價值 |
---|---|---|
jobInputType | [必要]指定作業的類型。 | 'uri_folder' (必要) |
模式 | 輸入資產傳遞模式。 | 'Direct' 'Download' 'EvalDownload' 'EvalMount' 'ReadOnlyMount' 'ReadWriteMount' |
uri | [必要]輸入資產 URI。 | 字串 約束: 模式 = [a-zA-Z0-9_] (必要) |
UriFolderJobOutput
名字 | 描述 | 價值 |
---|---|---|
jobOutputType | [必要]指定作業的類型。 | 'uri_folder' (必要) |
模式 | 輸出資產傳遞模式。 | 'ReadWriteMount' 'Upload' |
uri | 輸出資產 URI。 | 字串 |
UserIdentity
名字 | 描述 | 價值 |
---|---|---|
identityType | [必要]指定身分識別架構的類型。 | 'UserIdentity' (必要) |