Freigeben über


AnomalyDetectorClient.DetectUnivariateEntireSeriesAsync Methode

Definition

Überlädt

DetectUnivariateEntireSeriesAsync(RequestContent, RequestContext)

[Protokollmethode] Erkennen von Anomalien für die gesamte Serie im Batch.

DetectUnivariateEntireSeriesAsync(UnivariateDetectionOptions, CancellationToken)

Erkennen von Anomalien für die gesamte Serie im Batch.

DetectUnivariateEntireSeriesAsync(RequestContent, RequestContext)

Source:
AnomalyDetectorClient.cs

[Protokollmethode] Erkennen von Anomalien für die gesamte Serie im Batch.

public virtual System.Threading.Tasks.Task<Azure.Response> DetectUnivariateEntireSeriesAsync (Azure.Core.RequestContent content, Azure.RequestContext context = default);
abstract member DetectUnivariateEntireSeriesAsync : Azure.Core.RequestContent * Azure.RequestContext -> System.Threading.Tasks.Task<Azure.Response>
override this.DetectUnivariateEntireSeriesAsync : Azure.Core.RequestContent * Azure.RequestContext -> System.Threading.Tasks.Task<Azure.Response>
Public Overridable Function DetectUnivariateEntireSeriesAsync (content As RequestContent, Optional context As RequestContext = Nothing) As Task(Of Response)

Parameter

content
RequestContent

Der Inhalt, der als Text der Anforderung gesendet werden soll.

context
RequestContext

Der Anforderungskontext, der das Standardverhalten der Clientpipeline pro Aufruf außer Kraft setzen kann.

Gibt zurück

Die vom Dienst zurückgegebene Antwort.

Ausnahmen

content ist NULL.

Der Dienst hat einen nicht erfolgreichen status Code zurückgegeben.

Beispiele

In diesem Beispiel wird gezeigt, wie DetectUnivariateEntireSeriesAsync mit erforderlichem Anforderungsinhalt aufgerufen und das Ergebnis analysiert wird.

var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);

var data = new {
    series = new[] {
        new {
            value = 123.45f,
        }
    },
};

Response response = await client.DetectUnivariateEntireSeriesAsync(RequestContent.Create(data));

JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("expectedValues")[0].ToString());
Console.WriteLine(result.GetProperty("upperMargins")[0].ToString());
Console.WriteLine(result.GetProperty("lowerMargins")[0].ToString());
Console.WriteLine(result.GetProperty("isAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly")[0].ToString());

In diesem Beispiel wird gezeigt, wie DetectUnivariateEntireSeriesAsync mit allen Anforderungsinhalten aufgerufen und das Ergebnis analysiert wird.

var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);

var data = new {
    series = new[] {
        new {
            timestamp = "2022-05-10T14:57:31.2311892-04:00",
            value = 123.45f,
        }
    },
    granularity = "yearly",
    customInterval = 1234,
    period = 1234,
    maxAnomalyRatio = 123.45f,
    sensitivity = 1234,
    imputeMode = "auto",
    imputeFixedValue = 123.45f,
};

Response response = await client.DetectUnivariateEntireSeriesAsync(RequestContent.Create(data), new RequestContext());

JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("expectedValues")[0].ToString());
Console.WriteLine(result.GetProperty("upperMargins")[0].ToString());
Console.WriteLine(result.GetProperty("lowerMargins")[0].ToString());
Console.WriteLine(result.GetProperty("isAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("severity")[0].ToString());

Hinweise

Dieser Vorgang generiert ein Modell mit einer ganzen Reihe, wobei jeder Punkt mit demselben Modell erkannt wird. Bei dieser Methode werden Punkte vor und nach einem bestimmten Punkt verwendet, um zu ermitteln, ob es sich um eine Anomalie handelt. Die gesamte Erkennung kann dem Benutzer einen allgemeinen status der Zeitreihe geben.

Im Folgenden finden Sie das JSON-Schema für die Anforderungs- und Antwortnutzlasten.

Anforderungstext:

Schema für UnivariateDetectionOptions:

{
  series: [
    {
      timestamp: string (date & time), # Optional.
      value: number, # Required.
    }
  ], # Required.
  granularity: "yearly" | "monthly" | "weekly" | "daily" | "hourly" | "minutely" | "secondly" | "microsecond" | "none", # Optional.
  customInterval: number, # Optional.
  period: number, # Optional.
  maxAnomalyRatio: number, # Optional.
  sensitivity: number, # Optional.
  imputeMode: "auto" | "previous" | "linear" | "fixed" | "zero" | "notFill", # Optional.
  imputeFixedValue: number, # Optional.
}

Antworttext:

Schema für UnivariateEntireDetectionResult:

{
  period: number, # Required.
  expectedValues: [number], # Required.
  upperMargins: [number], # Required.
  lowerMargins: [number], # Required.
  isAnomaly: [boolean], # Required.
  isNegativeAnomaly: [boolean], # Required.
  isPositiveAnomaly: [boolean], # Required.
  severity: [number], # Optional.
}

Gilt für:

DetectUnivariateEntireSeriesAsync(UnivariateDetectionOptions, CancellationToken)

Source:
AnomalyDetectorClient.cs

Erkennen von Anomalien für die gesamte Serie im Batch.

public virtual System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateEntireDetectionResult>> DetectUnivariateEntireSeriesAsync (Azure.AI.AnomalyDetector.UnivariateDetectionOptions options, System.Threading.CancellationToken cancellationToken = default);
abstract member DetectUnivariateEntireSeriesAsync : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateEntireDetectionResult>>
override this.DetectUnivariateEntireSeriesAsync : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateEntireDetectionResult>>
Public Overridable Function DetectUnivariateEntireSeriesAsync (options As UnivariateDetectionOptions, Optional cancellationToken As CancellationToken = Nothing) As Task(Of Response(Of UnivariateEntireDetectionResult))

Parameter

options
UnivariateDetectionOptions

Methode der univariaten Anomalieerkennung.

cancellationToken
CancellationToken

Das zu verwendende Abbruchtoken.

Gibt zurück

Ausnahmen

options ist NULL.

Beispiele

In diesem Beispiel wird gezeigt, wie DetectUnivariateEntireSeriesAsync mit den erforderlichen Parametern aufgerufen wird.

var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);

var options = new UnivariateDetectionOptions(new TimeSeriesPoint[] 
{
    new TimeSeriesPoint(3.14f)
{
        Timestamp = DateTimeOffset.UtcNow,
    }
})
{
    Granularity = TimeGranularity.Yearly,
    CustomInterval = 1234,
    Period = 1234,
    MaxAnomalyRatio = 3.14f,
    Sensitivity = 1234,
    ImputeMode = ImputeMode.Auto,
    ImputeFixedValue = 3.14f,
};
var result = await client.DetectUnivariateEntireSeriesAsync(options);

Hinweise

Dieser Vorgang generiert ein Modell mit einer ganzen Reihe. Jeder Punkt wird mit demselben Modell erkannt. Bei dieser Methode werden Punkte vor und nach einem bestimmten Punkt verwendet, um zu bestimmen, ob es sich um eine Anomalie handelt. Anhand der gesamten Erkennung kann der Benutzer einen Gesamtstatus der Zeitreihe erhalten.

Gilt für: