Cet ensemble de modèles montre comment configurer Azure AI Studio avec l’installation de base, ce qui signifie que l’accès à Internet public est activé, les clés gérées par Microsoft pour le chiffrement et la configuration d’identité managée par Microsoft pour la ressource IA.
Cet ensemble de modèles montre comment configurer Azure AI Studio avec l’installation de base, ce qui signifie que l’accès à Internet public est activé, les clés gérées par Microsoft pour le chiffrement et la configuration d’identité managée par Microsoft pour la ressource IA.
Cet ensemble de modèles montre comment configurer Azure AI Studio avec l’installation de base, ce qui signifie que l’accès à Internet public est activé, les clés gérées par Microsoft pour le chiffrement et la configuration d’identité managée par Microsoft pour la ressource IA.
restreint réseau Azure AI Studio
Cet ensemble de modèles montre comment configurer Azure AI Studio avec une liaison privée et une sortie désactivées, à l’aide de clés gérées par Microsoft pour le chiffrement et la configuration d’identité managée par Microsoft pour la ressource IA.
restreint réseau Azure AI Studio
Cet ensemble de modèles montre comment configurer Azure AI Studio avec une liaison privée et une sortie désactivées, à l’aide de clés gérées par Microsoft pour le chiffrement et la configuration d’identité managée par Microsoft pour la ressource IA.
Cet ensemble de modèles montre comment configurer Azure AI Studio avec l’authentification Microsoft Entra ID pour les ressources dépendantes, telles qu’Azure AI Services et Stockage Azure.
Cet ensemble de modèles Bicep montre comment configurer Azure Machine Learning de bout en bout dans une configuration sécurisée. Cette implémentation de référence inclut l’espace de travail, un cluster de calcul, une instance de calcul et un cluster AKS privé attaché.
Cet ensemble de modèles Bicep montre comment configurer Azure Machine Learning de bout en bout dans une configuration sécurisée. Cette implémentation de référence inclut l’espace de travail, un cluster de calcul, une instance de calcul et un cluster AKS privé attaché.
Ce modèle de déploiement spécifie un espace de travail Azure Machine Learning et ses ressources associées, notamment Azure Key Vault, Stockage Azure, Azure Application Insights et Azure Container Registry. Cette configuration décrit l’ensemble minimal de ressources dont vous avez besoin pour commencer à utiliser Azure Machine Learning.
Ce modèle de déploiement spécifie comment créer un espace de travail Azure Machine Learning avec chiffrement côté service à l’aide de vos clés de chiffrement.
Ce modèle de déploiement spécifie un espace de travail Azure Machine Learning et ses ressources associées, notamment Azure Key Vault, Stockage Azure, Azure Application Insights et Azure Container Registry. L’exemple montre comment configurer Azure Machine Learning pour le chiffrement avec une clé de chiffrement gérée par le client.
Ce modèle de déploiement spécifie un espace de travail Azure Machine Learning et ses ressources associées, notamment Azure Key Vault, Stockage Azure, Azure Application Insights et Azure Container Registry. Cette configuration décrit l’ensemble des ressources dont vous avez besoin pour commencer à utiliser Azure Machine Learning dans une configuration isolée du réseau.
Ce modèle de déploiement spécifie un espace de travail Azure Machine Learning et ses ressources associées, notamment Azure Key Vault, Stockage Azure, Azure Application Insights et Azure Container Registry. Cette configuration décrit l’ensemble des ressources dont vous avez besoin pour commencer à utiliser Azure Machine Learning dans une configuration isolée du réseau.
Cet ensemble de modèles montre comment configurer Azure AI Studio avec l’installation de base, ce qui signifie que l’accès à Internet public est activé, les clés gérées par Microsoft pour le chiffrement et la configuration d’identité managée par Microsoft pour la ressource IA.
Cet ensemble de modèles montre comment configurer Azure AI Studio avec l’installation de base, ce qui signifie que l’accès à Internet public est activé, les clés gérées par Microsoft pour le chiffrement et la configuration d’identité managée par Microsoft pour la ressource IA.
Cet ensemble de modèles montre comment configurer Azure AI Studio avec l’installation de base, ce qui signifie que l’accès à Internet public est activé, les clés gérées par Microsoft pour le chiffrement et la configuration d’identité managée par Microsoft pour la ressource IA.
restreint réseau Azure AI Studio
Cet ensemble de modèles montre comment configurer Azure AI Studio avec une liaison privée et une sortie désactivées, à l’aide de clés gérées par Microsoft pour le chiffrement et la configuration d’identité managée par Microsoft pour la ressource IA.
restreint réseau Azure AI Studio
Cet ensemble de modèles montre comment configurer Azure AI Studio avec une liaison privée et une sortie désactivées, à l’aide de clés gérées par Microsoft pour le chiffrement et la configuration d’identité managée par Microsoft pour la ressource IA.
Cet ensemble de modèles montre comment configurer Azure AI Studio avec l’authentification Microsoft Entra ID pour les ressources dépendantes, telles qu’Azure AI Services et Stockage Azure.
Cet ensemble de modèles Bicep montre comment configurer Azure Machine Learning de bout en bout dans une configuration sécurisée. Cette implémentation de référence inclut l’espace de travail, un cluster de calcul, une instance de calcul et un cluster AKS privé attaché.
Cet ensemble de modèles Bicep montre comment configurer Azure Machine Learning de bout en bout dans une configuration sécurisée. Cette implémentation de référence inclut l’espace de travail, un cluster de calcul, une instance de calcul et un cluster AKS privé attaché.
Ce modèle crée un espace de travail Azure Machine Learning, ainsi qu’un compte de stockage chiffré, un coffre de clés et une journalisation Applications Insights
Ce modèle de déploiement spécifie un espace de travail Azure Machine Learning et ses ressources associées, notamment Azure Key Vault, Stockage Azure, Azure Application Insights et Azure Container Registry. Cette configuration décrit l’ensemble minimal de ressources dont vous avez besoin pour commencer à utiliser Azure Machine Learning.
Ce modèle de déploiement spécifie comment créer un espace de travail Azure Machine Learning avec chiffrement côté service à l’aide de vos clés de chiffrement.
Ce modèle de déploiement spécifie un espace de travail Azure Machine Learning et ses ressources associées, notamment Azure Key Vault, Stockage Azure, Azure Application Insights et Azure Container Registry. L’exemple montre comment configurer Azure Machine Learning pour le chiffrement avec une clé de chiffrement gérée par le client.
Ce modèle de déploiement spécifie un espace de travail Azure Machine Learning et ses ressources associées, notamment Azure Key Vault, Stockage Azure, Azure Application Insights et Azure Container Registry. Cette configuration décrit l’ensemble des ressources dont vous avez besoin pour commencer à utiliser Azure Machine Learning dans une configuration isolée du réseau.
Ce modèle de déploiement spécifie un espace de travail Azure Machine Learning et ses ressources associées, notamment Azure Key Vault, Stockage Azure, Azure Application Insights et Azure Container Registry. Cette configuration décrit l’ensemble des ressources dont vous avez besoin pour commencer à utiliser Azure Machine Learning dans une configuration isolée du réseau.