Freigeben über


AnomalyDetectorClient.DetectUnivariateLastPointAsync Methode

Definition

Überlädt

DetectUnivariateLastPointAsync(UnivariateDetectionOptions, CancellationToken)

Erkennen von Anomalien status der letzten Point-in-Time-Reihe.

DetectUnivariateLastPointAsync(RequestContent, RequestContext)

[Protokollmethode] Erkennen von Anomalien status der letzten Point-in-Time-Reihe.

DetectUnivariateLastPointAsync(UnivariateDetectionOptions, CancellationToken)

Source:
AnomalyDetectorClient.cs

Erkennen von Anomalien status der letzten Point-in-Time-Reihe.

public virtual System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateLastDetectionResult>> DetectUnivariateLastPointAsync (Azure.AI.AnomalyDetector.UnivariateDetectionOptions options, System.Threading.CancellationToken cancellationToken = default);
abstract member DetectUnivariateLastPointAsync : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateLastDetectionResult>>
override this.DetectUnivariateLastPointAsync : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateLastDetectionResult>>
Public Overridable Function DetectUnivariateLastPointAsync (options As UnivariateDetectionOptions, Optional cancellationToken As CancellationToken = Nothing) As Task(Of Response(Of UnivariateLastDetectionResult))

Parameter

options
UnivariateDetectionOptions

Methode der univariaten Anomalieerkennung.

cancellationToken
CancellationToken

Das zu verwendende Abbruchtoken.

Gibt zurück

Ausnahmen

options ist NULL.

Beispiele

In diesem Beispiel wird gezeigt, wie DetectUnivariateLastPointAsync mit den erforderlichen Parametern aufgerufen wird.

var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);

var options = new UnivariateDetectionOptions(new TimeSeriesPoint[] 
{
    new TimeSeriesPoint(3.14f)
{
        Timestamp = DateTimeOffset.UtcNow,
    }
})
{
    Granularity = TimeGranularity.Yearly,
    CustomInterval = 1234,
    Period = 1234,
    MaxAnomalyRatio = 3.14f,
    Sensitivity = 1234,
    ImputeMode = ImputeMode.Auto,
    ImputeFixedValue = 3.14f,
};
var result = await client.DetectUnivariateLastPointAsync(options);

Hinweise

Dieser Vorgang generiert ein Modell mithilfe der Punkte, die Sie an die API gesendet haben, und basierend auf allen Daten, um zu bestimmen, ob der letzte Punkt anomale ist.

Gilt für:

DetectUnivariateLastPointAsync(RequestContent, RequestContext)

Source:
AnomalyDetectorClient.cs

[Protokollmethode] Erkennen von Anomalien status der letzten Point-in-Time-Reihe.

public virtual System.Threading.Tasks.Task<Azure.Response> DetectUnivariateLastPointAsync (Azure.Core.RequestContent content, Azure.RequestContext context = default);
abstract member DetectUnivariateLastPointAsync : Azure.Core.RequestContent * Azure.RequestContext -> System.Threading.Tasks.Task<Azure.Response>
override this.DetectUnivariateLastPointAsync : Azure.Core.RequestContent * Azure.RequestContext -> System.Threading.Tasks.Task<Azure.Response>
Public Overridable Function DetectUnivariateLastPointAsync (content As RequestContent, Optional context As RequestContext = Nothing) As Task(Of Response)

Parameter

content
RequestContent

Der Inhalt, der als Text der Anforderung gesendet werden soll.

context
RequestContext

Der Anforderungskontext, der das Standardverhalten der Clientpipeline pro Aufruf außer Kraft setzen kann.

Gibt zurück

Die vom Dienst zurückgegebene Antwort.

Ausnahmen

content ist NULL.

Der Dienst hat einen nicht erfolgreichen status Code zurückgegeben.

Beispiele

In diesem Beispiel wird gezeigt, wie DetectUnivariateLastPointAsync mit erforderlichem Anforderungsinhalt aufgerufen und das Ergebnis analysiert wird.

var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);

var data = new {
    series = new[] {
        new {
            value = 123.45f,
        }
    },
};

Response response = await client.DetectUnivariateLastPointAsync(RequestContent.Create(data));

JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("suggestedWindow").ToString());
Console.WriteLine(result.GetProperty("expectedValue").ToString());
Console.WriteLine(result.GetProperty("upperMargin").ToString());
Console.WriteLine(result.GetProperty("lowerMargin").ToString());
Console.WriteLine(result.GetProperty("isAnomaly").ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly").ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly").ToString());

In diesem Beispiel wird gezeigt, wie DetectUnivariateLastPointAsync mit allen Anforderungsinhalten aufgerufen und das Ergebnis analysiert wird.

var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);

var data = new {
    series = new[] {
        new {
            timestamp = "2022-05-10T14:57:31.2311892-04:00",
            value = 123.45f,
        }
    },
    granularity = "yearly",
    customInterval = 1234,
    period = 1234,
    maxAnomalyRatio = 123.45f,
    sensitivity = 1234,
    imputeMode = "auto",
    imputeFixedValue = 123.45f,
};

Response response = await client.DetectUnivariateLastPointAsync(RequestContent.Create(data), new RequestContext());

JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("suggestedWindow").ToString());
Console.WriteLine(result.GetProperty("expectedValue").ToString());
Console.WriteLine(result.GetProperty("upperMargin").ToString());
Console.WriteLine(result.GetProperty("lowerMargin").ToString());
Console.WriteLine(result.GetProperty("isAnomaly").ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly").ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly").ToString());
Console.WriteLine(result.GetProperty("severity").ToString());

Hinweise

Dieser Vorgang generiert ein Modell mit den Punkten, die Sie an die API gesendet haben, und basierend auf allen Daten, um zu bestimmen, ob der letzte Punkt anomale ist.

Im Folgenden finden Sie das JSON-Schema für die Anforderungs- und Antwortnutzlasten.

Anforderungstext:

Schema für UnivariateDetectionOptions:

{
  series: [
    {
      timestamp: string (date & time), # Optional.
      value: number, # Required.
    }
  ], # Required.
  granularity: "yearly" | "monthly" | "weekly" | "daily" | "hourly" | "minutely" | "secondly" | "microsecond" | "none", # Optional.
  customInterval: number, # Optional.
  period: number, # Optional.
  maxAnomalyRatio: number, # Optional.
  sensitivity: number, # Optional.
  imputeMode: "auto" | "previous" | "linear" | "fixed" | "zero" | "notFill", # Optional.
  imputeFixedValue: number, # Optional.
}

Antworttext:

Schema für UnivariateLastDetectionResult:

{
  period: number, # Required.
  suggestedWindow: number, # Required.
  expectedValue: number, # Required.
  upperMargin: number, # Required.
  lowerMargin: number, # Required.
  isAnomaly: boolean, # Required.
  isNegativeAnomaly: boolean, # Required.
  isPositiveAnomaly: boolean, # Required.
  severity: number, # Optional.
}

Gilt für: